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Refraction & Diffraction: GN equations

Abstract

The Green-Naghdi equations are shallow water cquations which can be solved to predict the
nonlinear-effects of water waves propagating in shallow waters. In this study, we derive the
Green-Naghdi equations for variable bathymetry and formulate the numerical model as a
boundary-value problem. A finite-difference model, in conjunction with grid-generation, is
developed to solve the Green-Naghdi equations. Non-linear wave propagation over a varying

bathymetry is presented for solitary and cnoidal waves.
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1 Introduction

In the field of wave modeling, various theories can be adopted to predict shallow-water wave
propagation. In the past, researchers have used theories based on equations such as the
Boussinesq and KdV equations (see for example, Schember, 1982181} to successfully model
shallow water waves in a variety of problems. In recent years, the Green-Nagdhi equations,
originally developed by Green and Naghdi (1977)14 to study deformable fluid sheets, have
been successfully employed to simulate nonlinear shallow water waves (see for example,
Ertekin, 198411, Qian, 199417 and Neill, 1996!). In this report, we present the theoretical
formulation and numerical implementation of shallow water wave modeling using the Green-
Naghdi equations in the presence of variable bathymetry. The numerical mbdel is based
on the finite-difference method in conjunction with numerical grid generation. A few test
cases are presented and the results are compared with the results obtained with Boussinesq

approximations.

2 Governing equations

In presenting the theoretical formulations, we adopt indicial notation (with implied Einstein’s
summation convention) unless otherwise noted. The derivatives are denoted by using the
comma convention (see for example Mase, 1970%). The Green-Naghdi equations (see e.g.
Green and Naghdi, 19774) in the form of continuity and momentum equations are presented
in this section. The subscripts, i, j, and k are used in these equations for the indicial
notation. These subscripts assume values of 1 and 2, unless otherwise noted, to denote the
two independent horizontal directions, i.e., 1 represents the longitudinal coordinate and 2

represents the transverse coordinate.

2.1 Contmulty equation

The continuity equation representing mass conservation is given by (see Ertekm 1984[1])

N+ (b + Duig + uil b + 7:) = 0. | (1)
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2.2 Momentum equation

The equation of motion representing balance of momentum is given by (see Ertekin, 1984(1)

Du; + gn; + % [-D?h(2n,; — ;) + (40 + h) D™+ (h+1)(2D%n; — D*h)] =0 (2)
where

h = h(z,,z3,t) is the water depth,

uy = (wi{z1, T2, t), va(Z1, 22, ) is the velocity vector with components u; and u alotig the

z, and z, directions, respectively,
n = n{z1. Z2,t) is the surface elevati.on,
¢ is the gravitational acceleration,
D, the total derivative operator, is given by
D() = (e +ws( )y o . 3)
é.nd, D2, the second total derivative operator, is given by

D) = (Y + g ) + 205 ) ge + wsreg (. + st () i I O

It can be observed that the momentum equation, Eq. (2), includes terms involving Du;, D?h
and D%y which are the total derivatives. These terms can be expanded using Egs. (3) and

(4).
Expansion of Du;: Using Eq. (3), Du; is expanded as

Dy = g + Uyl 4. . | (5)

Expansion of D*h: Using Eq. {4), the second total derivative of the water depth, h, is

given by

D*h = h,u + u_,-,,hn,- + 21&th: + ujukdh,k + ujukh‘jk. (6)
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Expansion of D*n: The second total derivative of the surface elevation, n, can be simplified
by using Eq. (3) and the continuity equation, Eq. (1). Using Eq. (3) and substituting
e = —(h+ nujy — w(hy +n4), we get

Dy =+ ujny
= —(h+ g — uilhy +71,) +winy (7
= —(h+ nuj; — wshy. “
From Eq. (3), it can be seen that Dh = h; +u;h,;. Using this in Eq. (7) gives
D= —(h + f})'i'.l.j,j + hy— Dh. (8)
Applying the total derivative operator, D, once again on Eq. (8), we get
D = [—(h+ nusz + hal , + ue [=(h + muy + b, = D*h. (9)
Simplifying Eq. (9) gives

Dz‘n = - (h + H)Ujjg - h,gﬂj,j — Natly g + h‘u - Hk(h + ?’})ﬂj,jk

- uk(h.k + T},g)u_m + ukh,k, — D h.
Substituting 7, = —(h + M) tuex — (b + ) in Eq. (10) gives
Dgn =— (h + T}')‘Ujljg - h_gum- + (h + ﬂ)uj,jUk,k + Uk(h,g + ﬂ)k)ujlj + h‘“ (11)
— (b + Dujge — unlhp + 100055 + vehge — D*h. .
Simplifying Eq. (11) gives
Dzn = (h + T}) ('_ujJi + u_,»;.,-ug,k - uku_,-,j;,) + tphoe + h,u - h,gu_,-d — D*h. (12)

It may be noted that the expansion of D?%; in Eq. (12) does not contain the time deﬁv_at.ives
of 77 which would be present if Eq. (4) is used to obtain the expansion. This absence of the
time derivatives of n aids in the numerical time-stepping scheme discussed later jn Section 4.

Expansion of D?h;: The D?h; term in Eq. (2) is expanded using Eq. (4) as

Dzh,,' = h'm + uj,.-,hd + ‘uj'gh‘ij + 21&_?,.‘}1_‘,'; + 2‘!1_1'}1,,;31 (13)

+ u,-,.-uk‘jh,k + ujugiihy + uug il + ujiteh ik + Ujﬂg,,’hajg + ujukh,,-jk.
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Expansion of D%n;;:

DPng =(hi +0:) (—usge + Us ek — Ukt
+ (h+ 1) (—uj it + B0k T WjgUeik = Uk ik — Uk s ijk) - (14)

+ ugh g + uphire + B = Rause — Rty — D*h;.

Thus, Eqs. (1)-(2), (5)-(6) and (12)-(14) represent the complete set of govefﬁing equations.

3 Boundary conditions

In this section, the boundary conditions along the boundaries that surround the domain
are presented. These boundary conditions along with the governing equations provided in
Section 2, complete the definition of the boundary value problem which can be solved using

numerical methods such as the finite-difference method.

3.1 Entrance Boundary

The entrance boundary is the boundary through which the wave enters. In the present
model, it will be assumed that the boundary of the domain will be chosen in such a way
that the wave enters perpendicular to this entrance boundary. At this boundary, the values
of the surface elevation and the velocity are input. Therefore, the boundary conditions are

given by

"?(-Ti;t) = n(e)(t)t i € S{é)s L (15)
wi(zi t) = 4, (), =i € Ste),

where 7,y (t) and u;,(t) are the surface elevation and particle velocity of the incoming wave

and S, at the entrance boundary.

3.2 Lateral Boundary

At the lateral boundaries on the left and the right sides of the incoming wave direction,
two types of boundary conditions may be considered. One is the wall condition were the
assumption is that this boundary acts as a wall thus reflecting all the waves back into the

4
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domain and not permitting any wave to radiate out of this boundary. This condition can be
described and implemented, theoretically as well as numerically, very accurately. However,
this may not represent the actual conditions that occur in open oceans. A more éppropri—
ate condition would be a radiation condition which permits the waves to pass through the
boundary. Such a condition is difficult to obtain theoretically without making any further
assumptions. In this study, we adopt.a radiation condition based on the geometric principles

and implement it numerically.

Wall condition

The wall condition is given by the fact there is no flow across the boundary. This is written

as
unl? =0 (16)

where n\) represents the unit normal to the lateral boundary.

t

Radiation condition

To obtain the radiation condition, we make the assumption that the velocity compoﬁents and
the surface elevation vary uniformly near this boundary. Such an assumption will be valid
only when the variation in the bathymetry is minimal resulting in very little refraction and
diffraction of waves. If the boundary does not satisfy these requirements, it is essential that
the boundary be moved to a location where this would be valid. Another option would be to
move the boundary farther by increasing the domain size and forcing the bathymetry to be
flatter by artificially changing the bathymetrjr near the lateral boundary. It may be noted
that increasing the domain size poses a disadvantage with increased number of corﬁputations
to be performed for the simulation. Thus, the decision on which boundary condition must
be chosen must be made considering the specific environmental data for the particular site
and the capability of the computer on which the simulation is performed.

To implement the radiation condition based on the assumption that the velocity and

surface elevation vary smoothly near the lateral boundary, we use a second-order extrapo-
lation of the values on the finite-difference grid to obtain the values at an imaginary grid
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point outside the domain. The determination of this value permits the application of the
governing equation which can be used to obtain the solutions at this boundary.

3.3 Open boundary

At the open boundary, the waves must be allowed to radiate outside'thlxe' domain. The
Orlanski radiation condition is applied at this boundary. The Orlanski condition is given by

&
Nt = Cb—-‘nl, I; € S(o)
() | . an

— i, T, €8
on o) ij § (o)

where ¢ = /gh is the wave celerity, Si,) denotes the open boundary, n(w]' = {N1(w)> Pa(w))
represents the unit normal to the outgoing wave crest and 4, is the Kronecker’s delta defined

by

Uig = C

5"_1' = () when i #j . . (]8)
=1wheni=/7

Equation (17) can also be written as

Nt = CNiw)ir Ts € S(o)s | | | (19)
Uiy = CU; Mj(w) Ti € Se)- '
Under the assumption of a monochromatic wave, it can be shown that the unit normal to
the wave crest (see for example, Yang and Ertekin, 1991°) can be written as

Nigw) = E— g o (20)

ViThi

where 4 represents the fact that the wave crest normal must be pomung in the dlrectwn of

wave propagation and not in the opposite direction.

3.4 Coastal Boundary

At the coastal boundary, the velocity normal to the boundary must be’ spec1ﬁed as zero.
This can be written a3 : : :
uing =0, z; € S, | | o (21)

where n; denotes the unit normal to the coastal boundary, S().

6
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4 Governing equations for time-stepping

To facilitate the time-stepping of the governing equations, Eqs. (1) and (2), it is necessary to
separate the terms involving the time derivatives and the rest. In this section, the continuity
and momentum equations, Eq. (1) and Eq. (2), respectively, will be rewritten by gathering
the terms involving the time-derivatives and separating the rest. The details of the numerical
treatment of the time and spatial derivatives in the governing equations is presented in

Section b.

4.1 Continuity equation

The continuity equation, Eq. (1), can be rewritten by moving the spatially dependent terms
to the right hand side and introducing a variable, Qjy}, so that '

Ne= Q[r.r}
and

Qu=—ln + Mttis + us(hy + 7)) | (23)

4.2 Momentum equation

In Section 1, an expansion of the term D?n was performed using the continuity equation,
Eq. (1), so that the time derivatives of 7 are eliminated by representing n in terms of
—{(h+n)u;];. After performing this substitution, the momentum equation, Eq. (2), contains
only terms with first derivatives of velocity, u;, and terms with only spatial derivativés. Using

Egs. (2), (5) and (12), the momentum equation is written as

. 1
Ui+ Uiy + g0+ g {—Dzh(Qn;j - h,,‘) + (4’!],5 + h,‘)[(h + T})
(—Uj‘jt + itk — ukuj,jk) + ukh,m + h,tt - h,;ujJ- - Dzh] (24)
+(h+n)(2D%n; — D*hy)} =0. o
In Eq. (24), it may be noted that the terms containing D?h, D*;; and D?h;, expanded in
Egs. (6), (13) and (14), respectively, contain time derivatives of velocity, u;. It i8 necessary
to distinguish the terms containing time derivatives from the rest so that a time-stepping

7
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scheme such as the Modified-Euler method can be implemented. To aid in the separation of
terms with time derivatives, and for simplicity, we rewrite Eqs. (6), (13) and (14) in more

convenient forms as shown in Eqs. (25), (27) and (28) below:
D*h = hdu_,-,t + T
where -

T = h,n + Qﬂjh,ﬁ + ujukdh‘k + u,-ukhdk,

D2h; = u; by + uishe + T
where
Tiope = hoiee + 25k e + 2R g0 + ujittichp + Uiliegghp + Bt
B + wjgueh e + wie b e + uiteh s,
and
Dy = —(h + )uige — (h+ nusge + T — Dby

where
Tigs =(hyi + 75) (25,580 — Uty je)
(B 1) (wg5ukk + U5 Uk — Uk itk — UklLiijk)

+ g ihps + urh ke + B — ety — Rt

(25)

(26)

(27)

(28)

(29)

(30)

To handle the terms in Eq. (24) that do not involve D*, D} and D] , we introduce a variable,

T[q.‘, stich that

1
Thas =vjuis + 9mi + g {(dna + h)[(h + ) (uj5uen — Uebige)

+Ukh,kg + h,“ - h‘gﬂj‘j - Tl]} .

And using this definition of Tjy; along with Eq. (25), we can rewrite Eq. (24) as

1 1
Uip — g+ )k + mluige + vishsl = 5 (D?h(2n; — k)] + Ty

+ g(h+ )2 = D) =0,

(31)

(32)
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Using Egs. (25), (27) and {29) in Eq. (32), we get

1 1
Uiy — 6(4"" +h)[(h + nusge + ujeh] — 3(27!.: — h)(usehg + 1)

1
+ Thajs + g(h + ) [=2(hs + 7a)us5 — 2(h + n)use (33)
. + 2T[3}.' - 3(uj,,-¢hd + uj,gh,i_,- + T[z]i)] = 0.
Rearranging the terms in Eq. (33) and simplifying, we get
1 1 .
uig — (At 0) | ni+ Shs ) Usge = g(h + 1) U5
1 1
- 5(’1 + ) (ugach g + wjchi) — g(?'?,i — h) T — ik U5 (34)
1 ;
+ Thapi + g(h + (2T — 3Tep) = 0
For simplicity, we introduce the variable, Q)i such that
1 1
Qi = — | T + 'ﬁ'(h + ﬂ)(z_T[sji — 3Tpay) — ‘6(271,:‘ - _h,:')Tl 3 (35)
so that
Uiy — Nl jUie
h; 1 1
= (hm) (M + 5 g+ A+ st F(sihy +uish)| - Qe =0
(36)

By the introduction of four variables, T3, Tjgji, Tjay and Tay, for convenience, the equations
of motion, Eq. (23), is rewritten as Eq. (36), where the terms containing the time derivatives
of velocity, u;, are separated from the terms involving spatial derivatives only. The terms
that involve spatial derivatives are represented by the variable, Q[ui, defined in Eq. (34).
This separation of the terms results in Eq. (36) which will be used to apply the numerical

time-stepping schemes as discussed in Section 5.

5 Numerical time-stepping

The continuity and momentum equations are given by Egs. (22) and (36). These equations
are solved using the finite-difference method spatially and the Modified-Euler method for

9



5 Numerical time-stepping Refraction & Diffraction: GN equations

the time integration. The superseripts (1), (m) and (2) will be used to represent the initial,
intermediate and final time levels of the Modified Euler method, respectively. Thus, at any
time step, given the initial values 7" and (Y at time step t, the values for the next time
step, At, 7 and u(?, are determined using the Modified Euler method. The initial values,
7" and u(") are used to determine in])‘..and R from the equations mentioned above.
These values are used to determine the intermediate values of 7™ and u{™. The Modified

Euler method is second-order accurate with the error O(At?). The time stepping procedure
adopted to accomplish the Modified-Euler method is described in this section. '

5.1 Continuity equation

Under the Modified Euler method, the continuity equation, Eq. (22), is used to obtain the
solutions for the surface elevation 7. The cquation to obtain the intermediate values, 7™,

is-given by
7™ = 5 + AtRD, (37)

and the second-step equation is given by

At

7P =5+ 5 (RO + R(™). ' (38)

5.2 Momentum equation

The momentum equation, Eq. (36), is used to obtain the solutions for velocity u, The

cquation to obtain the intermediate values, u; , is given by
™ = |
[ h 1 m m
) [ B0+ 30+ TR )

) 1
- n,,-ha-ug }

) (39)

h 1
— (h+n) |+ ) + 5 ~(uj hy + u,ﬁ»”h,u-)] - AL,

h (1}
( + nu; +3

2 3

10
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and the second-step equation is given by

[ h; 1 1 ' ]
- (h + '-’]) (T],i + = ) UE?J) + —(h + n)uﬁz + —(ug?h,j + ug?)hl"j)

=u£1) _ n.ih,ju _l) _ . (40)

hi 1 1 T

—(h+n) (n,s + —2-) )+ Z(h 4l + (SR, + u{h )

A ,,, '

It may be noted that the terms on the right hand sides in Eqgs. (39) and (40) dependl on
the values at the previous time step, except Qf:]‘z in Eq. (40). Since Eq. (39) is solved prior
to solving Eq. (40}, the values, Q'™ are known before we attempt to solve Eq. (40). This

[ulé
makes another simplification possible where we combine all the terms on the right hand side.

This results in

o™ g™
~(h+7) [(n,.- + %) ulP + 3(h + )l + ;( (Mh+ u§“’h_;j)] (41)
=Ry + OQ(); | -
and
o _ ikl
~(h+mn) [(n,g + };') ) + (h +n)ul + = (u(g)h + u‘”h',,)] T
=Ry + (Q{i]’, D, | |
* such that

O _ o uld

Ry =v; - -
) [l B+ S + S )]

(43)

Thus, the continuity and momentum equations can be integrated in time using the Modified-
Euler method given by Egs. (37)-(38) and Egs. (41)-(42). :

i1
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5.3 Boundary conditions

Among the boundary conditions presented in Section 3, only the open boundary condition
given by the Orlanski condition needs to be rewritten implementing the tirhe—stepping scheme
in place of time derivatives. Applying the Modified Euler method to the open boundary
condition, Eq. {19), the first and the second-order approximations are written as

??(:m ) = :i:Atcn.-(w)ﬂ_(il), T € S{o) ' (44)
W™ = £ Atengutl, 2, €8
it Ri(w) Ui i (a)
and

At .
n,(tm} = i—m‘(ﬂ’)(n.{j ) + TJ,(,I))» z; € S(o)

2 |
45)

At ; (

uly) = £enw) (w3 +ul3), 2 € S |

6 Curvilinear coordinates and spatial derivatives

In Section 5, the methodology adopted to integrate the governing equations with respect
to time, ¢, is presented. To obtain the solutions of Eqs. (37)-(38) and Eqs. (39)-(40), the
domain is spatially discretized into a grid and the finite-difference method is used, ie. the
spatial derivatives are represented in terms of the finite-difference formulas. To facilitate the
use of a non-uniform grid, a curvilinear coordinate system will be adopted in conjunction
with numerical grid generation. In this section, the details of the implementation of the

curvilinear coordinate system is explained and the finite difference formulas to obtain the '
spatial derivatives are presented. The numerical grid generation provides the mapping of the
physical domain represented by the coordinate system (z1,22) to a curvilinear coordinate

system represented by (&1, £z). Namely,

(z1,22) = (61, &2)- ' _ ' (46)

To describe the implementation of this transformation to the equations of the problem, we

introduce a generic variable, f, such that

f(xlsz‘.‘ t) = f(fl! 621t)' . ' o . (47)

12
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6.1 First-order derivatives

‘The relationship between the first-order spatial derivative in the physical and the computa-

tional domain of variable, f, is given by the chain rule as

f,:l'-’.' = {j,:if,ﬁj . . _ . (48)

where the derivative, &;,, can be obtained from the mapping achieved by the numerical
grid-generation. While using numerical grid-generation to obtain the mapping, it is more
convenient to represent the spatial derivatives with respect to & rather than z;. Since
§;; involves the derivative with respect to &;, it is necessary to represent €z, in terms
of derivatives with respect to &. This can be achieved by defining the Jacobian of the

transformation as

Jii = Tigy- (!49)
For two dimensional problems, the Jacobian matrix is given as

o[z o] < o

Lo T2,

Since |

feo = Tigf a0 " (51)
we get

foe =Tl _ | , (52)
Or,

fa = Tl | | - (53)

where J! represents the inverse of the Jacobian matrix J. It may be noted that the inverse
of the Jacobian matrix can be expressed in terms of the co-factor and determinant using

gh= . | (54)

13
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where C, ; is the co-factor of the element, J;;, of the Jacobian matrix and J, (= [F1), is the
determinant of the Jacobian matrix. Therefore, using Eq. (54} in Eq. (53), we get

Ca e .
f,:c-' = 7 i~ _ ) . . (65)

It can be seen that by introducing the Jacobian of the transformation, Eq. (47) can be written
-as Eq. (55) where the derivatives are with respect to & instead of z;. For two-dimensional
domains, the co-factor matrix, C, is given by
z —z : ' '
C,‘j — 2,62 251 o (56)
~Ig  Tie '
and the Jacobian, J, is given by
J=T16T20 — Tra%20- (57)

Thus, Eqgs. (55)-(57), using the generic variable, f, provide the expression for the first-order

derivatives in terms of derivatives in the computational domain.

6.2 Second-order derivatives

Using Eq. (55) and applying the chain rule, the second-order derivatives can be expréssed in

terms of derivatives in the computational domain as

f,m:; = (fa ),:l:,

Cit,C;
= TJ‘(ka,&),&
1 ' Cj; C,—k . (58)
= ZCiCufaa + 5 (Flafa
1 1
= CiuCiuf e + Cnfa (JCina ~ JCe).
For brevity, defining Ci;x and D;e such that
1
Cijnt = :jr_g'chCik ' - (59)
and
1 .
Dyjx = 55Cu(J(Cirsge = i), | - (60)
we get
friz; = Cimf e + Dijef - ' (61)
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6.3 Expansion of derivatives in two-dimensions

The expressions relating the derivatives in the physical domain andl the computational do-
main are presented in Sections 6.1 and 6.2. These expressions are presented using indicial
notation and are applicable to two-dimensional as well as three-dimensional computational
domains. In this section, these expressions for the derivatives are expanded for the two-
dimensional domain so that the indices ¢, and k take the values of 1 and 2 for the two

independent directions and are presented below:

J = T2 ~ T1,6T24 (62)
1
fo = (@26 f 0 + T28 S ) (63)
J
) ] _
faa = j(ifl,faf,.sl + 21,6, f2)s (64)
1. 4 2
f,:nm =ﬁ(m2,£zf.éxﬁl - 2:52,61552‘&-&1-52 + zz,&f{z&)
L 2 (65)
T (22 e 2206 — 26267006 T P20 T206) (Trafa T 216 e)
+(Ig,&x1y€1€1 - 232,{1 T2,62216:62 T x%,ElxlvE%ﬁ)(I?;E?fsfl + I2;Elf|£2)] ’
and
1, 5 2
f.:l-‘z:z =ﬁ( 1,§3f,£1E1 - 2$1,€1I1.&f.£1£: + Il,ﬁfﬁzf:)
y (66)

1 : 2
-7 [(xl,cgﬂ’z,snel - 201 6 T 6 T006 Tl Laae) (ELefa F 2ua o)
Hed e trpe — 216 T1L06% 046 + TLaT1e6) (T2afa + 226 )] -
Eq. (61) in Section 6.2 provides a compact form of the second-order derivatives. The expan-

sion of Eq. (61) and its coefficients are given below:

= (Crinafee, + Cunfae + Cunfan + Cunfoe + Dufe +Diafg)  (67)

f-xl,zl

and

Feazn = (Coarfaiey + Comafee + +Com St + Conefiaea + Dufies + Dy fe,). (68)
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where

- Diyy = Duzyg — Doy,
Diis = Diazag, — Dutig
Dy = Dntr g, — Daazag

Dqgy = Daoag, — Dz,

such that
2 2
D (2 g mpe — 2T TaeT2060 T TigT260)
i1 — J‘?'
2 2
D= (72 e, 216 — 2026 T2.6T 166 T T2 TL06)
12 — J3
(22, Toe6 — 2016 21,6% + 22, T2 0es)
Doy = 1,844 28181 1£: 01,642,662 1,6; “2,4282
21 — J3
2
D, = (ﬁ,g,xl,ele; =2z 6, %16 T 166 + 31,&31.5:&)
22 — J3
and
Togs —T2,6 T2t
Cun =7 Cure =Cun = —5— > Cum =
3
, 21,6 T1,
Cao11 =—J§2, Cagiz = Crnt = -———'—.’f,; 2 Cnm =

6.4 Finite-difference formulas

2
3,61

2

(69)

(70)

Since the problem is solved in a curvilinear coordinate system, and to estimate the deriva-

tives with respect to z;, it is essential to estimate the derivatives with respect to &;. This can
be seen from the expressions for the derivatives presénted in Section 6.3. Using bracketed
subscripts of the form, [¢, 7], to represent the nodal locations along the £ and & direc-
tions, respectively, the finite-difference formulas used to estimate the partial derivatives with

respect to & and &; are given as

_ vt = fi-14)
f,El— 9 3

_ g — frig-n
fa= =

16

(72)

(13)
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Joee = f[m'””_f[iﬁl“’“];f[‘ﬂ,: 1 + fli-1,5- Uy ('74)

fae = fival — 2fpa + o . - (19)
and

Fests = fiig+1) — Mgt + fig-n- -(76)

It may be noted that these formulas are second-order accurate. The formulas given in
Egs. (72)-(76) can be used to estimate the derivatives with respect to z; using Eqs (62)-

(66).

7 Successive Over Relaxation

In Sections 4-6 of this report, the time-stepping procedure, Egs. (37)-(40), and the spatial
discretizations, Eqs. (62)-(76), reduces the problem into a solution of linear system of equa-
tions. With the values of the surface elevation, n, and the velocity, u;, known at the previous
time steps, the values at the current time step form the unknowns of the lincar system. This
linear system of equations is in the form of a banded system and the values at the previous
time step are close to the unknown values at the current step. Therefore, it is more efficient
to use an iterative method such as the successive over-relaxation method (SOR) compared
to non-iterative methods such as Gaussian elimination. In this section, the details of the
reduction of the momentum equation, Eq. (36), to a form convenient for the implementation
of SOR is presented.

To facilitate the iterative scheme, it is essential to rewrite the govefning_ equ'ation'in
a form where a new iterative value can be predicted using the iterative value from the
previoﬁs iteration. The momentum equation given by Eq. (36) contains the first-order and
second-order derivatives of u;. These will be approximéted using the equations in Section 6.3
and finite-difference formulas in Section 6.4. Let us consider the iterations performed at any
arbitrary node [¢, ). It may be noted that only the equations for the second-order derivatives,
Eqs. (75) and (76), involve the values at the node [, j]. This means that only the u;z,z, terms
contain the unknowns ;. It may be noted Eqgs. (39) and (40) are similar in form, with the
main difference in the superscripts indicating the time-stepping levels. In this section, we

17



7 Successive Over Relaxation Refraction & Diffraction: GN equations

explain the implementation of the SOR. We will consider only Eq. (40) and the procedure
for Eq. (39) will follow similar principles. To perform successive over relaiatiori'; only the
terms involving u; must be retained on the left hand side and the rest must be moved to the
right hand side. We have terms such as u; giving rise to terms with u; when i = j and the
other terms when i # 7. Since only the terms when i = j are needed on the left hand side,
we need to move the terms with i # j to the right hand side. To demonstrate this, and for
simplicity, we consider the equation for the velocity component u, along the z; direction.
The derivation for the other velocity component, ug, can be obtained in a similar fashion

and, therefore, will not be presented here.

Introducing the variable A; for simplification, we write the equatidn for u; as
= L s = haman® = 5+ Pull = A (77)
where
A =%(h +muih; + ‘;'(h + ) oud + hanaud
+ %(h + 7?)215‘52?;2 +h+n) (n,; + %) u;? + Rpun : ' (78)
+ 2o + .
Using Eq. (61) in Eq. (77), we get

1
u?) - §(h + T})h_uu(12} - h,ln,lu?)

1 h )QC . (B D (2) y _ A (79)
- 5( +7 ngk(ul,gj& + ueuu,‘) = Ai.
Equation {79) can be expanded to give
) .
uf® - S+ Mhuu — by

- ﬁ(h +9)i(C 111111(1?%15, + 011121152,& + (3'112116[12,,32.51 + 0112215(12,5,) _ (80) _

+ (Dnufgl + Dlgu%) = A;.

Simplifying Eq. (80), dropping the superscript,s' and -sub'stituting the derivatives using the
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8 Test cases Refraction & Diffraction: GN equations

finite-difference formulas given by Egs. (72)-(76), we get
. 1 2
[1 - E(h +mhn ~hina + §(h +9)*(Cun + sz)l Uifig]

- 'lg(h + MY Crn (U414 + B1i-14) +

%(Cl_uz + Cria0 ) (W1 g+1] — Wafio1,44+1) = 1f41g-1] T Vai-14-1})

+ Crizauagi g+ + s g-1)]

+ %[Du(uuwm — uyim1g) T Dra(tgigen — Unfig-1))] = A1
Rearranging the terms in Eq. (81), we get

Ay + 1B+ 0)?[Cin (i g + tap-14)
= +(Cunz + Cuar) (1) — U140 ~ Wifirrg-1) + Uifi-1,4-1))
+Cuznl(wgen + vipi-1)] - (82)
s = +3[Di1(vpien i) — tai-1,41) — Dia(wagigen — i j-1)]
[1 - %(h +a)har = bR+ %(h +7)*(Cius + 01122)]

Equation (82), and a similar equation for usli, j], can be used, in conjunction with SOR, to
solve for u; and u;. The derivatives on the right hand side of Eq. (82) will be obtained by
using the derivatives’ .representation in a curvilinear-coordinate system given by Eqs. (63)-
(66) and the finite-difference formulas given by Eqs. (72)-(76).

8 Test cases - |

In the previous sections, the theory and numerical techniques to obtain the solutions of
the Green-Nagdhi equations are presented. In this section, we consider certain example
cases for which solutions have been'obtained using other shallow.—water wave theories such
as the Boussinesq equations. A comparison of the results obtained using the Green-Nagdhi

equations is made with the previously obtained results.

8.1 Ramp case

Here, we consider the diffraction of a solitary wave propagating over a ramp or, in other
words, a shelf. This case was considered by Ertekin and Wehausen (1987)1¥) where the
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8 Test cases Refraction & Diffraction: GN equations

Green-Nagdhi equations are used to study soliton propagation in different setups. This case
was also considered by Schember (1982)[® where Boussinesq equations are used to study the
wave propagation over different sizes of ramps and shelves. In Figure 1, a schematic diagram
of the setup considered here is presented, where h; is the depth at the incoming boundary,
h, is the depth at the outgoing boundary, z, is the z,-coordinate at the incoming boundary,
zp is the z;-coordinate at the outgoing boundary, zs is the location of the start of the ramp

and Lg is the length of the ramp.

r .
T/(— Incoming wave

I TN

Sea-Floor

Figure 1: Schematic diagram of wave diffraction due to a ramp

To facilitate an accurate comparison of the results, we choose one of the cases considered
by Ertekin and Wehausen (1987)P] with all the parameters kept same, with the only exception
being the three-dimensionality of the computer program in the case considered here.

The incoming wave is a solitary wave with a dimensionless height of 0.12 which, as in
Ertekin and Wehausen (1987)[3] is mcorporated using initial conditions. At time £ = 0, the
wave is set with the maximum peak at £; = 30. At this instant of time, the wave profile
for a wave of height of (.12 results in almost negligible surface elevation at the incoming
boundary. It may be noted that a similar approach is adopted by Schember (1982)18, It is
believed that such an approach avoids the numerical instability that occurs at the incoﬁﬁng
boundary due to the inaccuracies in the finite-difference representation of the third-order
derivatives of velocity at the incoming boundary. ' '

The ramp starts at the location z; = £g = 40 which slopes from a constant depth at the
incoming boundary to a value half of that at the outgoing boundary. The location of the
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8 Test cases : Refraction & Diffraction: GN equations

ramp is such that at time ¢ = 0, the surface clevations at the ramp in the initial wave profile
are negligible. The ramp is of length, Lz = 10 which results in a slope of 1:20.

A dimensionless grid spacing of 0.1 is chosen and, in order to satisfy the Courant condition
for numerical stability, the time step is set as 0.1. The simulation is carried out for 900 time
steps. The wave profiles at ¢ = 20, 30,50, 70 and 90 are presented in Figure 2. These profiles
compare very well with the results presented in Figure 6 of Ertekin and Wehausen (1987)F,

The evolution of the surface elevations at different numerical gage locations are presented
in Figure 3. These results also compare very well with the results presented in Ertekin and

Wehausen (1987)P,

8.2 Mounﬁ case

In this section, we consider a mount or, in other words, submerged shelf as shown in Figure 4.
We consider this case which was analyzed by Ertekin and Becker (1996)% to study the
effectiveness of this numerical model in handling the diffraction of cnoidal waves. In this
section, the results of the simulation of diffraction due to a submerged shelf is presented
for incoming cnoidal waves and is compared with the previous results (Ertekin and Becker,
1996)1.

A schematic diagram of the setup is presented in Figure 4. The domain extends from
%1 = z;, to £; = Tg. The description of the location of the mount is accomplished by using
the variables, 24, Z5, Zc and zp. The water depth at the submerged shelf is represented by
hy. In the case considered in this study, we have used the following values to represent the
mount:

r4 = 203.7, 25 = 205.1, z¢ = 208.1, and, xp = 209.5.
These parameters correspond to the values used in case 6 of Ertekin and Becker (1996)[2].
The height of the incoming cnoidal waves is taken as 0.1. Still water condition is used as
the initial condition and therefore, in order to ensure numerical stability, the incoming wave
velocities and surface elevations are modulated using an exponential decay function of the
form of 1 —e~*'. In this expression, & represents the modulation constant which takes values
in the range of 0.5 to 1.0. In the calculations performed here, we have taken s to be 1.
A rectangular grid with a grid spacing of 0.1 is used in conjunction with a time step of
0.07 ensuring the numerical stability of the computations by satisfying the Courant stability
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Figure 2: Wave profiles at time steps for u_niform ramp case
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Figure 3: Time evolution of surface elevations at different gages for uniform ramp case
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z .
Z]/( Incoming wave

0 B~ 3

b

Sea-Floor

I1 =4 ry=%Xp

Figure 4: Schematic diagram of the setup for the mount case

condition. The simulation is performed for 8000 time steps resulting in a wave 'p‘foﬁle at
time £ = 560 as shown in Figure 5. This combares reasonably well though there are some
notable differences on the right hand side of the mount with figure 2(d) of Ertekin and Becker
(1996)[. However, the time evolution at numerical wave gages 3 and 4 located at 2, = 208.1
and x, = 209.5, respectively, shown in Figure 6 are in excellent agreement with the results
obtained by Ertekin and Becker (1996)[2).

8.3 Curved-ramp case

In order to confirm the validity of the computer program in a fully three-dimensional en-
vironment, we consider a ramp that is curved using a cosine-square function. This case
was considered by Schember (1982)[® where Boussinesq equations are used to simulate the

diffraction of solitary waves. To obtain a curved ramp, the ramp is shifted by the function
f(#2) given by |

MLy :
< . . 3
2. VS (83)

F(22) = Aramptos®

where A,,mp is the shift distance and ¥, is the width of the curved section. The schematic
setup is shown in Figure 7. The case considered here is described as the *narrow concave”
case in Schember (1982)® where a ramp of slope 1:10 is curved using Eq. (83) with Aromp
taken as 10. '

24



8 Test cases : Refraction & Diffraction: GN equations

02

=3
o
;

S
o

S
e

& &
[4+] [+))
8III}II‘II‘I[!IIIIII'IIY

1
—_——

Figure 5: Wave profile at ¢ = 560 for the mount case
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Figure 6: Time evolution of surface elevations at numerical gages for the mount case
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" Figure 7: Schematic diagram of the setup for the curved-ramp case
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To avoid numerical instabilities, the bathymetry was smoothed by taking a weighted-
average of the depth values at the neighboring points at a finite-difference node. This
operation is deemed necessary due to the presence of derivatives of depth upto the third-
order. In Figure 8, a three-dimensional plot of the curved-ramp bathymetry as used in the

present calculations is presented.

It can be seen from Eq. (83) that the domain is symmetric about the z; — =2 plane and
therefore, by using a symmetry condition at z3 = 0, we need to obtain solutions in only one
half of the domain and the mirror image will provide the solution for the other balf.

The length of the domain for the problem under consideration is taken as 120 with the
width as 32. To facilitate the input of the solitary wave as the initial condition, similar to
the two-dimensional uniform ramp considered earlier, the computationai domain is set from
-30.0 to 90.0 in the 2, direction and 0 to 16 in the z; direction. A grid spacing of 04 is
used to discretize the domain into a rectangular grid. A time step of 0.4 is used in these

calculations just as in Schember (1982)81.

In Figs. 9-12, we present three-dimensional plots of the surface elevations at times ¢ =
20, 40, 60 and 80. These plots compare very well with the three-dimensional plots presented
by Schember. The corresponding contour plots of the surface elevations are presented in
Figs. 13-16. It may be noted that due to different contouring algorithms used and due to
the fact that the surface elevations are close to zero at most of the domain, a very close
cbmparison of the contour lines with Schember’s results is not possible. To provide a more
lucid comparison of the results, we present the wave profiles at sections along the 2, direction
at the wall and the center lines in Figs. 17 and 18. It can be seen that these results do compare
very well providing the necessary validation for the three-dimensional cases.

To evaluate the ability of the model to simulate the propagation of periodic waves subject
to varying bathymetry, we consider cnoidal waves as the incomin'g waves. The other input
parameters are the same as in the solitéry wave case presented above. We assume the still
water condition as the initial condition and cnoidal waves are modulated to avoid numerical
instabilities. _ ' )

In Figs. 19 and 20, the diffracted waves are shown in the surface elevation plot of the
cnoidal waves at time, t=160. The two cases differ in the appllcatlon of the lateral boundary
condition. In Figure 19, a wall condition was used, while in Figure 20, the radiation condition
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8 Test cases

Figure 8: Bathymetry for the éurved—ramp case
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8 Test cases

Figure 9: Wave profile at ¢ = 20 for the curved-ramp case
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Figure 10: Wave profile at ¢ = 40 for the curved-ramp case
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Figure 11: Wave profile at t = 60 for the curved-ramp case
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Figure 12: Wave profile at ¢ = 80 for the curved-ramp case
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Figure 13: Surface elevation contours at ¢ = 20 for the curved-ramp case
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Figure 14: Surface elevation contours at ¢ = 40 for the curved-ramp case Schematic diagram

of the setup for the curved-ramp case
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Figure 15: Surface elevation contours at t = 60 for the curved-ramp case
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Figure 16: Surface elevation contours at ¢ = 80 for the curved-ramp case
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Figure 19: Cnoidal-wave profiles for the curved-ramp case with wall lateral-boundary con-

dition
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" Figure 20: Cnoidal-wave profiles for the curved-ramp case with radiating lateral-boundary

condition
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was used. It can be seen that the surface elevations are close to normal in the case of Figure 19
due to the wall condition, while this is not the case in Figure 20. In Figs. 21 and 22, we

show the contours of surface elevations for the same instant in time.
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Figure 21: Cnoidal-wave contours for the curved-ramp case with wall lateral-boundary con-

dition

9 Summary

The problem of wave propagation subject to varying bathymetry is considered using the
Green-Naghdi equatlons The theoretical formulations of the physical problem is presented.
The governing equations are wtitten in a Slmpllﬁed manner to facilitate the numerical imple-
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mentation. The finite-difference method in conjunction with the grid generation is adopted
to spatially discretize the domain and the Modified-Euler method is used to perform time-
integration. The special treatment of the boundary conditions Eave also been presented.
The capabilities of the model have been demonstrated and validated by considering three
cases: (a) ramp, (b) mount and (c) curved-ramp. Results indicate very good comparison

"with the previously known results.
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Appendix A

gn3d and Utilities - User’s Manual

1 Introduction

This mannal describes the usage of the following programs:
gn3d - This is the main program which performs the simulation of wave diffraction due to
varying bathymetry (See Sections 2-5). '

gngrid - This program generates the data for the grid which becomes the input to gn3d
(See section 6).

gndepth - This program generates the data for the depth which becomes the input to gn3d

(See section 7).

gnwvemkr - This program generates the data for the incoming wave which becomes the

input to gn3d (See section 8).

gn3dtec - This program generates tecplot data files from the binary output files of gn3d
(See section 10). L

2 gn3d Commands syntax

The programs require inputs in the form of batch files where commands are written 6ne
after the other with one command per line. The format of the command syntax defining
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2 gn3d Commands syntax Refraction & Diffraction: GN equations

any general command is described below. The reader is referred to section 4 where a sample

batch file is presented. The programs are executed at command line as follows:

$ gngrid wave.grd

$ gndepth wave.dep
$ gnuvemkr wave.wve
$ gn3d wave.gn

$ gn3dtec wave.tec

where wave.grd, wave.dep, wave.wve, wave.gn and wave.tec are the batch files for programs

gngrid, gndepth, gnwvemkr, gn3d and gn3dtec respectively.

2.1 Command types

The main input to gn3d and utility programs is done through a batch file consisting of

commands. The commands are of three types:

Comments

Any line that starts with "#’ character is treated as comment.

Assignments

The parameters are assigned using an assignment statement of the following syntax:
<parameter name> = <parameter value>:'.
For example:
Qel_filter_on = _TRUE.; -

where vel_filter_on is the parameter name and .TRUE. is the value.
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3 Input commands of gn3d Refraction & Diffraction: GN equations

Execution statements

The execution statements are commands with arguments placed inside parenthesis. These '

are used to execute certain tasks and have the following syntax
command_name (argl, arg2, arg3, .. .).;
For example
quad_bdry_gen(4001,6,0.,0.,400.,0.,400.,2.,0.,2.};

where quad_bdry_gen is the éommand that generates a quadrilatel boundary and thg values
4001, 5, ... specify how this is to be performed. The arguments can be to type real, integer
or character string and the number of arguments depends on the command.

2.2 Input data types

The parameter value will belong to one of the following data-types:

(real) The real numbers are to be entered either using a non-precision format such as 3.14159

or using double precision format such as 3.1415940.
(integer) The integers numbers are to be entered as a series of digits.

(string) The strings are entered within double quotes, for example, as "Hello" in assignment

statements and without quotes in execution statements.

(boolean) The boolean values are entered using _TRUE. and .FALSE just as in Fortran language.

3 Input commands of gn3d

The parameters used in gn3d are discussed in the following sections.

‘3.1 Filtering related inputs
Filtering and Successive over relaxation related inputs are described below:

48



3 Input commands of gn3d Refraction & Diffraction: GN equations

Filter time step interval

The interval in terms of time-steps during which filtering is to be done is represented by
filter.time_step_interval (integer).

_Example:

filter_time_step_interval = 1,

Filter velocity

The boolean parameter, vel_filter_on (logical}, determines whether filtering of velocity
must be performed or not. ' 3 A
Example:

vel_filter_on = .TRUE.;

Filter surface elevation
The boolean parameter, zeta_filter.on (logical), determines whether filtering of surface
elevation must be performed or not. '
Example:

~zeta_filter_on = .FALSE.;

Depth smoothing

The real parameter, depth_filter_weight (real), is used to control the filtering. A weight
of 1.0 means that the importance to the value at a node is 100% compared to its neighboring
nodes and, therefore, results in no filtering. Any value less than 1.0 can be used to achieve
smoothing of the depth with a value of 1.0 representing zero smoothing and a value of 0

representing maximum.

Example:
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3 Input commands of gn3d Refraction & Diffraction: GN equations

depth_filter_weight = 0.6d0;

The integer parameter, no_of _depth_filters (integer), is used apply smoothing re-
peatedly. A value of 10, for example, means that smoothing will be applied 10 times.
Example:
no_of\_depth_filters = 10;

Therefore, a combination depth_filter.weight and no_of depth_filters can be used

to control depth smoothing.

3.2 SOR related inputs

Filtering and Successive over relaxation related inputs are described below:

Maximum iterations

The maximum number of iterations that is permitied while performing Successive over re-
laxation (SOR) is specified using max.no_of_iterations (integer). - -
Example:

max_no_of_iterations = 100;

SOR tolerances

Successive over relaxation is used to solve the Modified-Euler method which involves two
steps. The tolerances for these two steps can be specified using tolerance_ist_level (real)
and tolerance_2nd_level (real) respectively. In general, using the same tolerances for

both levels is recommended.

Example:

tolerance_lst_level = 1.4-3;
tolerance_2nd_level = 1.d-4;
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3 Input commands of gn3d Refraction & Diffraction: GN equations

3.3 Input files

Binary input files are used to specify the grid, bathymetry and the incoming wave. The

filenames of the input files are entered as described below:

Grid input file

The grid used for the simulation is input from the grid input file which ts a FORTRAN
binary file. The format of the file is described in section 6. The file name is input using the

parameter, grid_input_file (string).
Example:
grid_input_file = "./inputs/grid.dat";

Bathymetry input file

The bathymetry used for the simulation is input from the bathymetry input file which is a
FORTRAN binary file. The format of the file is described in section 7. The file name is
input using the parameter, bathymetry_input.file (string).

Example:

bathymetry_input_file = "./inputs/depth.dat";

Wave input file

The wave used for the simulation is input from the wave input file which is a FORTRAN
binary file. The format of the file is described in section 8. The file name is input using the

parameter, wave_input_file (string).

Example:

wave_input_file = "./inputs/wave.dat";
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3 Input commands of gn3d Refraction & Diffraction: GN equations

Initial condition input file

The initial condition used for the simulation is input from a FORTRAN binary file
whose format is described in section 8. The file name is input using the parameter,

initcdn_input_file (string).

Example:

initcdn_input_file = "“./inputs/initcdn.dat";

3.4 Output related inputs

The parameters related to outputs are described below:

QOutput time step interval

As the program undergoes time-marching, output of the crucial parameters such as velocity
and surface elevations may be performed in a regular time-step intervals. The parameter,

output_time.step_interval (real) can be used to specify this.
Example:

output_time_step_interval = 10;

Surface elevation output file

The surface elevations are stored in FORTRAN binary format into the file specified by the

parameter zeta_output_file (string).

Example:
zeta_output_file = "../outputs/zeta.out";

The details of the output format is presented in 5.3.
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3 Input commands of gn3d Refraction & Diffraction: GN equations

Mesh output file .

‘The mesh or grid details are stored in FORTRAN binary format into the file specified by

the parameter mesh_output file (string).

Example:

mesh_output_file = ". ./outputs/mesh.bu "3

Velocity output file

The velocity components are stored in FORTRAN binary format into the file specified by

the parameter velocity output_file (string).

Example:
velocity_output_file = "../outputs/vel.out";

The details of the output format is presented in 5.3.

Case details output file

The case details are stored in text format into the file specified by the parameter
case_details_output.file (string). ' ) '

. Example:

case_output_file = "../outputs/case.out";

Numerical gages

Numerical gages can be installed to obtain time series of values at any location. The gage
details are stored in text format into the file specified by the parameter gage_output_file

(string).

Example:
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3 Input commands of gn3d‘ Refraction & Diffraction: GN equations

gage_output_file = "../outputs/gages.jnk";

The location of the gages can be specified using add.gage command. The right hand
side of the assignment has two components with the first component being the z, location

and second being the z; location of the gage.

Example:

add_gage = 100.40, 200.40;

Log file
A log of actions performed is stored into the log file specified by the parameter

log output_file (string).

Example:

log_output_file = “../outputs/gn.log";

Delete old output files

Since the output files are new files, before specifying the output files, it is essential to ensure
that files with the same paths and names do not exist on the system. The user can use the
rm command to delete the files from the system. The user is cautioned that the files will be’

deleted with no questions asked.

Example:

e "../outputs/case.jnk";

3.5 Execution statements

There are two simple commands to execute the program. The first one is start and the
other is end These commands do not have any arguments and are, therefore, entered in a

simple fashion as shown below.
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4 Sample commands file Refraction & Diffraction: GN equations

Example:

# -———- Start the actual rum -----
start,

# - End the program -—-—---

end;

4 Sample commands file

To run a particular case, the batch commands are input into a batch file. This batch file

hecomes an argument to the executable at the command-line. For example,

$.gn wave.gn

will run the case described in the file "wave.gn”. A sample set of commands which goes into

such batch file are given below:

¥ - Open log file --——==
m "../../outputs/mount/gn.log";
log_output_file = “../../outputs/mount/gn.log";

---=- Delete old files ---
../outputs/mount/gages. jnk";
. ./outputs/mount/case. jnk";
./../outputs/mount/zeta. jnk";
. ./outputs/mount/vel. jnk";
../outputs/mount/mesh. jnk";

s9389y "

. ./outputa/mount/incwave. juk";

# —-=--- Input variables -~-——-
case_description = "Tast Casg";

case_number = 1000;
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4 Sample commands file Refraction & Diffraction

: GN equations

max_no_of _iterations = 300;
filter_time_step_interval = 1;
vol_filter_on = .TRUE.;
zeta_filter_on = .TRUE.;
1.4-4;
1.d4-4;

tolerance_lst_level

tolarance_2nd_level

gor_relax_factor = 0.6d0;

output_time_step_interval = 500;

no_of_time_steps = 8000;

grid_input_file = v, ./../tests/mount/grid. jnk";
bathymetry_input_file = "../../tests/mount/depth.jnk";
wave_input_file = "../../tests/mount/wave.jnk";
initcdn_input_file = w_ . /../tests/mount/initcdn. jnk";

no_of_depth_filters = 3;
depth_filter_weight = 0.9;

gage_output_file = n,./../outputs/mount/gages. jnk";
add_gage = 199.7d0, 2.5d0;

add_gage = 205.140, 2.5d0;

add_gage = 208.1d0, 2.5d0;

add_gage = 209.5d0, 2.5d0;

add_gage = 213.7d0, 2.6d0;

# - Set output fileg --=----

zeta_output_file = “../../outputs/mount/zeta.jnk";
velocity_output_fila = "../../outputs/mount/vel.jnk";
case_output_file = "../../outputs/mount/case.jnk";
mesh_output_file = "../../outputs/mount/mesh.jnk";

incoming_wave_output_file = v, ./../outputs/mount/incwave. jnk";
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5 Outputs Refraction & Diffraction: GN equations

start;

# ——--- End the program ----==
end;

5 QOutputs

The outputs of gn3dd are presented in this section.

5.1 Case details

All the small details of the case is sent to the file specified by the input paramcter
case_output_file.

The data is written using sequential unformatted fashion which is described in below:

write (UNIT = zeta_output_unit) itstep
write (UNIT

& ((zeta(i, j), i =1, n1), j =1, n2)

zeta_output_unit)

where itstep is the time step number and zeta is the surface elevation.

5.2 Surface elevations

The surface elevations at a time step specified by the time step interval parameter,
output_time_step_interval, is saved in FORTRAN binary file specified through the in-

put parameter zeta_output.file.

The data is written using sequential unformatted fashion which is described in below:

write (UNIT = mesh_output_unit)

g ni, n2, (x1G, ), i=1, 1), j =1, n2)
write (UNIT = mesh_output_unit)

& nl, n2, ((x2(i, j), i =1, n1), j =1, n2)
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6 gngrid - Elliptical grid generation Refraction & Diffraction: GN equations

write (UNIT = mesh_output_unit)
& =n1, n2, ((h(i, j), i =1, n1), j =1, n2)

where itstep is the time step number and (x1,x2) are the coordinates of the nodal point

at (i,3).

5.3 Velocity components

The velocity components at a time step specified by the time step interval parameter,
output.time_step_interval is saved in FORTRAN binary file specified through the input
parameter zeta output_file.

The data is written using sequcnﬁial unformatted fashion which is described in below:

write (UNIT = vel_output_unit, ERR = 110) itstep
write (UNIT = vel_output_unit, ERR = 110)

g ((ui(i, §), i =1, a), j =1, n2),

g ((u2(i, j), i=1, n1), j =1, n2)

where itstep is the time step number and (ul,u2) are the velocity components.

6 gngrid - Elliptical grid generation
The program gngrid is used to generate the mapping betﬁecn the physical domain and the

computational domains. The commands supported by gngrid are presented below.

6.1 Commands

Load boundary data

The command load.bdry(file name) takes the file name containing the boundary data as
the argument. Internally, the boundary data is read using the following code:
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6 gngrid - Elliptical grid géneration Refraction & Diffraction: GN equations

read (UNIT=10, FMT=+) m, n

read (UNIT=10, FMT=+) (x(1, i), i =1, m)
read (UNIT=10, FMT=+) (y(1, i), i =1, m)
read (UNIT=10, FMT=#) (x{n, i), i =1, m)
read (UNIT=10, FMT=#) (y(n, i), i = 1, m)
-read (UNIT=10, FMT=+) (x{(j, 1), j =1, n)
read (UNIT=10, FMT=x) (y{(j, 1), j = 1, n)
read (UNIT=10, FMT=+) (x(j, m), j = 1, n)
read (UNIT=10, FMT=+) (y{(j, m), j = 1, n)

where m and n are the two dimensions of the grid and x and y represents the two coordinates

at all boundary nodes.
Example:

load_bdry_data(bdry.dat);

Generate quadrilatrral boundary

A quadrilateral shaped domain can be generated using quad_bdry.gen.
Syntax:
quad_bdry_gen(nx, ny, xi, yi, ..., x4, y4);

where nx and ny are the number of nodes along x and y directions. x1, y1, etc. represents

the coordinates of the four corners of the quadrilateral.

Example:

quad_bdry_gen(4001,6,0.,0.,400.,0.,400.,2. ,0.,2.);

X0
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6 gngrid - Elliptical grid generation Refraction & Diffraction: GN equations

Generate initial guess grid

The command generate_initial_grid () is simply called to generate the guess mesh before

grid generation begins. This command has no arguments.
Example:
generate_initial_gridQ);

Generate curvilinear grid

To generate the curvilinear grid, the command curvilinear gridgen () must be issucd.

This command has no arguments.
Example:
generate_curvilinear_grid();

Find maximum grid spacing

Sometimes, it is useful to determine the maximum grid spacing. This can be done by calling

find max_spacing (). This command has no arguments.

Example:

find_maximum_grid_spacing();

Delete a file

Since the output files are new files, before specifying the output files, it is essential to ensure
that files with the same paths and names do not exist on the system. The user can use the
rm (file.name) command to delete the files from the system. The user is cautioned that

the files will be deleted with no questions asked.

Example:
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6 gngrid - Elliptical grid generation Refraction & Diffraction: GN equations
rm(../outputs/case. jnk);

Save the grid in gn3d binary format

The generated grid can be saved in the following binary format using the command:

save_grid_for_gn3d (file.name).

write(UNIT = 10) m, n
write (UNIT = 10) ((x(j, 1), i =1, m} , j =1, n),
Uy, D, i=1,m ,j=1, 0

This format is understood by gn3d and thus, this output file becomes input file for gn3d.
Example:
save_grid_for_gn3d(grid.bin);

Save the grid in tecplot format

The generated grid can be saved in tecplot binary format using the command:
save grid for_tecplot (f ile_name} This format is understood by Tecplot and thus, this

output file becomes input file for Tecplot.
Example:
save_grid_for_tecplot{grid.plt);

Save SOR relaxation coefficients

Along with grid generation, gn3d can also generate relaxation coefficients for SOR. These

can be saved into a file using save_sor.relax_coefs (file name).

Example:

save_sor_relax_coeffs(relax.jnk);
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7 gndepth - Bathymetry generation Refraction & Diffraction: GN equations

Display this help message
The help command, help (), displays the syntax of all the commands of gngrid. This

command has no arguments.

Example:

help();

Quit the program

To quit, simply call quit ().
Example:

quit();

6.2 Sample commands file

This is a sample commands file for gngrid.

quad_bdry_gen(4001,6,0.,0.,400.,0.,400.,2.,0.,2.);
generate_initial grid();

curvilinear_gridgen();

rm{grid.plt);

rm(grid. jok);

save_grid_for_gn3d(grid.bin};
save_grid_for_tecplot{grid.plt); |

quit(); '

7 gndepth - Bathymetry generation

gndepth is a utility program that can be used to generate the bathymétry inputs for gn3d.
The commands supported by gn3d are given below. '
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7 gndepth - Bathymetry generation Refraction & Diffraction: GN equations

Load grid

To generate a bathymetry, one must load a grid file so that the depth at the nodal point
locations can be determined. This is achieved using load grid (grid_input_file). The
grid input file is of the same format as grid input file for gn3d. See section 6 for more details.

Example:

load_grid{(grid. jok};

Load bathymetry

Typically, the bathymetry data is available a random locations. This means that some kind
of interpolation must be performed to obtain the depths at the nodal points. The idea
adopted in gndepth is as follows: ' :

1. Obtain depths at random locations,

2. Using programs that can triangulate (Tecplot, matlab, etc.) obtain a finite element

mesh made of linear triangle, and

3. Use this finitc element mesh and linear shape functions to interpolate and determine

depth at any point inside the domain.

Therefore, a finite-element mesh containing the bathymetry data is input to gndepth and
must be loaded using the command, load bathymetry (bathymetry-input_file). Inter-

nally, this command reads binary data using:

read(UNIT = 10) nmnpb, nmelb

print *, ’Reading coordinates. ..’

read (UNIT = 10) (xb(i), yb(i), zb(i), i=1, nmnpb)

print *, ’Reading eclements...’

read(UNIT = 10) (ielnmb(1, i), ielamb(2, i), ielmmb(3, i), i=1, nmelb)

where nmnpb is number of nodes, nmelb number of elements, xb and yb coordinates of the

nodal points and ielnmb represents connectivity.
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7 gndepth - Bathymetry generation Refraction & Diffraction: GN equations

Example:

load_bathymetry_input_file{grid. jnk);

Convert latitide-longitude to meters

When digitizing bathymetry using nautical maps, a coordinate transformation be-
tween latitude-longitude system to meter system must be performed. The command
convert_lat_long_to meters () performs this transformation. This command has no ar-

guments.

Example:

convert_lat_long_to_metersa();

Determine depths at nodes on grid

To determine the depths at the node locations using interpolation of finite-element mesh with
linear triangles, the command find_depths_at_gridnodes () can be used. This _cbmma,nd

has no arguments.

Example:

find_depths_at_nodes(); - .

Generate ramp-like shelf bathymetry

gndepth can  produce a  ramp-like bathymetry using the command,
generate_shelf bathymetry (h1, h2, xstart, xend), where hi1 and h2 are the
depths at two sides of the ramp and xstart and xend are the starting and ending points of

the ramps.

Example:
generate_shelf_bathymetry(10.d0, 7.d0, 40.d0, 50.40);
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7 gndepth - Bathymetry generation Refraction & Diffraction: GN equations

Generate submerged shelf bathymetry

A submerged-mount type bathymetry can be generated using g‘enefate_mount_bathymetry
(b1, b2, x1, x2, x3, x4) where hi and h2 are the depths at outside and inside the mount
respectively. x1, x2, x3 and x4 are the x-locations of the four points that represcnts the

mount.

Example:

generate_mount_bathymetry(1.d0, .3d0, 203.40, 205.d0, 208.d0, 209.d0};

Save bathymetry for gn3d

"The generated bathymetry can be saved in the following binary format using
save_grid_bathymetry for_gn3d (bathymetry output_file):

write(UNIT = 10) m, n
write(UNIT = 10) ({z(i,j), i=1,m), j=1,n)

where m and n are dimensions of the grid and z is the dept.h values at the nodes of the grid.

This format is understood by gn3d and thus, this output file becomes input file for gn3d.

Example:

save_grid_bathymetry_for_gn3d(depth.bin);

Save grid bathymetry for tecplot

The generated bathymetry can be saved in the Tecplot binary format using
save_grid_bathymetry_for_tecplot (bathymetry.tecfile)

This format is understood by Tecplot and thus, this output file becomes input file for
Tecplot. ' ”
Example:

save_grid_bathymetry_for_tecplot(depth.plt);
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8 gnwvemkr - Numerical Wave maker Refraction & Diffraction: GN equations

Display this help message

The help command, halp O, displays the syntax of all the commands of gndepth. This

command has no arguments.
Example:
help();

Quit the program

To quit, simply call quit O.
Example:

quit();

7.1 Sample commands file

This is a sample commands file for gndepth.

load_grid(grid. jnk); )
generate_mount_bathymetry(1.dO, .3d0, 203.40, 205.d40, 208.d0, 209.d0);
rn(depth. jnk) ;

rm{depth.plt);

save_grid_bathymetry_for_gn3d(depth. jnk);
save_grid_bathymetry_for_tecplot(depth.plt);

quit;

8 gnwvemkr - Numerical Wave maker

The numerical wave maker has the capability generating cnoidal and solitary waves. The
program is prompt-driven and commands are entered by the user interactively.
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8 gnwvemkr - Numerical Wave maker Refraction & Diffraction: GN equations

Amplitude

The amplitude of the incoming wave is specified using set_amplitude which takes the value

of the amplitude (real#8) as argunient.
Example:
set_amplitude(0.01);

Wavelength

The amplitude of the incoming wave is specified using set_wave.length which takes the

value of the wave length (real*8) as argument.
Example:
get_wave_length(10.d0);

Wave modulation factor

The incoming wave can be modulated. The meodulation factor is specified ﬁsing
set_wave_modulation_factor with the value of the factor (real+8) as argument.

Example:
set_wave_modulation_factor(1.40);

Number of time steps

The total number of time steps needed to simulate the time duration of intereset is set using

the command, set no_of _time_steps.

Example:

set_no_of_time_steps(10.d0);
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8 gnwvemkr - Numerical Wave maker Refraction & Diffraction: GN equations

Time step
The time step interval is set using the command set.time_step with the value of time step

(real*8) as argument.

Example:

set_time_step(0.01d0);

Gravity

The gravititational acceleration is set using the command set.gravity with the value
(real*8) as argument. This value determines the unit-system used in the program. Con-

sistent units must be used for all inputs.

Example:

set_gravity(9.81d0);

Depth

set_depth (real) _
The depth value at the incoming boundary is set using the command set_depth with

the value (real*8) as argument.

Example:

set_depth{(10.0d0);

Lateral condition

Two types of lateral conditions are possible (1) Wall condition (2) radiation condition. There
are two lateral boundaries, one on the left of the incoming wave direction and the other on
the right. These are specified using set_lateral_cdn (irnteger, integer). A value of 1
represents wall condition and a value of 2 represents radiation condition.
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8 gnwvemkr - Numerical Wave maker Refraction & Diffraction: GN equations
Example:
set_lateral_cdn(1,1);

Shift along x

set.x_shift (real)
Example:

set_x_shift(-10.d0);

x at incoming boundary

The value of x at the incoming boundary is set using set_x_at_incoming.bdry with a
(real*8) value as the argument. This value is used to generate initial wave profile. In

some cases, we may start the simulation with wave already (partially) inside the domain.

Example:

set_x_at_incoming_bdry(-10.d0);

x at outgoing boundary

. The value of x at the outgoing boundary is set using setx at_outgoing bdry with a
(real+8) value as the argument. This value is used to generate initial wave profile. In
some cases, we may start the simulation with wave already (partially) inside the domain.

Example:

set_x_at_going bdry(-10.40);
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Grid spacing

The value of grid spacing is set using set_delta.x_with a (real+8) value as the argument.
In some cases, we may start the simulation with wave already (partially) inside the domain

and this value is used to generate initial wave profile.

Example:

set_delta_x(0.02d0);

Incoming wave

‘The incoming wave can be generated by calling generate_incoming. vave (). This command

has no arguments.
Example:
generate_incoming wave();

Wave profile

generate_wave_profile ()
The initial wave profile can be generated by calling genératg,wave_prof ile (). This

command has no arguments.
Example:

generate_wave_profile();

Save wave

The incoming wave and other pértinent info can be save in gn3d binary format using
save_incoming wave for_gn3d (file name). This format is understood by gn3d and thus,

this output file becomes input file for gn3d.
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Example:
save_incoming_wave_for_gn3d(wave. jnk)

The incoming wave can be saved in Tecplot binary format using
save_incoming_wave_for_tecplot (file.name). This format is understood by Tecplot

and thus, this output file becomes input file for Tecplot.

save.incoming wave_for_tecplot ()

Example:
save_incoming_wave_for_tecplot (wave.plt)

The initial wave profile can be saved in gn3d binary format using
save_wave_profile_for.gn3d (filemame)., This format is understood by gn3d and
thus, this output file becomes input file for gn3d as the initial condition for the case.

Example:

save_wave_profile_for_gn3d(initcdn. jnk)

The initial wave profile can be saved in Tecplot binary format using
save_wave_profile_for_tecplot (file.name). This format is understood by Tecplot and

) thus, this output file becomes input file for Tecplot.

Example:

save_wave_profile_for_tecplot(initcdn.plt)

'9 Sample commands file

This is a sample commands file for gnwvemkr.

7



10 gn3dtec - Tecplot file generation Refraction & Diffraction: GN equations

set_gravity(1.d0)

set_depth(1.d0)

set_wave_height (0.1d0)
set_wave_length(11.35d0)
set_x_shift(0.d0)
set_x_at_incoming_bdry(0.d0)
set_wave_modulation_factor(1.d0)
load_grid(grid. jnk)

set_no_of_waves(60)
set_time_step(0.07d0)
generate_incoming_wave();

rm(wave.plt)

rm(wave. jnk)
sava_incoming_uave_for_tecplot(wava.plt)
save_incoming_wave_for_gn3d{wave.jnk)
rm{initcdn. jok)
save_wave_profile_for_gn3d(initcdn. jnk)
quit

10 gn3dtec - Tecplot file generation

gn3dtec is a utility that converts Fortran binary output from gn3d to Tecplot format.

11 Commands

11.1 Save mesh

The command mesh2tec can be used to convert the mesh output file from gn3d to tecplot
format. The syntax is mesh2tec (gn3dmesh.out, mesh.plt); where gn3dmesh.out is the
gn3d mesh-output file and mesh.plt is the Tecplot file.

Example:
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mesh2tec(mesh.out, mesh.plt);

11.2 Save velocity

The command vel2tec can be used to convert thé velocity output file from gn3d to tecplot
format. The syntax is vel2tec(gn3dvel.out, mesh.out, datasetnuml, datasetnum2,
vel.plt); where gn3dvel.out is the gn3d velocity-output file, gn3dmesh.out is the gn3d
mesh-output file and vel.plt is the Tecplot file. datasetnuml and datasetnum? represent
the starting and ending numbers of the datasets that are to be saved, respectively.

Example:

vel2tec{vel.out, mesh.out, 1, iO, vel.plt);

11.3 Save surface elevation

The command zeta2tec can be used to convert the surface elevation output file from
gn3d to tecplot format. The syntax is zeta2tec(gn3dzeta.ouvt, mesh.out, datasetnumi,
datasetnum2, data.step, zeta.plt); where gn3dzeta.out is the gn3d surface elevation-
output file and zeta.plt is the Tecplot file. datasetnumiand datasetnum2 represent the
starting and ending numbers of the datasets that are to be saved, respectively. data.step

is the dataset-interval at which the datasets are to be saved

. Example:

zeta2tec(zeta.out, mesh.out, 1, 10, 2, zeta.plt);

11.4 Save gage surface elevation .

The command gage2tec can be used to convert the gage surface elevation out.put file from
gn3d to tecplot format. The syntax is gage2tec (gn3dgage .out, datasetnum, gage. plt);
where gn3dgage.out is the gn3d gage surface elevation-output file and gage.plt is the
Tecplot file. datasetnum represents the number of the dataset that is to be saved.
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Example:

gage2tec(gage.out, 10, gage.plt);
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