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Abstract

The Green-Naghdi equations are shallow water equations which can be solved to predict the
nonlinear-effects of water waves propagating in shallow waters. In this study, we derive the
Green-Naghdi equations for variable bathymetry and formulate the numerical model as a
boundary-value problem. A Suite-difference model, in conjunction with grid-generation, is
developed to solve the Green-Naghdi equations. Non-linear wave propagation over a varying
bathymetry is presented for solitary and cnoidal waves.
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2.2 Momentum equation

The equation of motion representing balance of momentum is given by  see Ertekin, 1984!'I!

Dui + gati + � [ � D h�q,i hi! + �q i + hi!D q+  h + rl!�D gi D h,i!] = 0 �!1

where

h = h zq, xq, t! is the water depth,

u, =  u~ xi, xz, t!, uq x~, xq, t!! is the velocity vector with components uq and uz along the
2:> and sq directions, respectively,

g = rI si, z2, t! is the surface elevation,

g is the gravitational acceleration,

D, the total derivative operator, is given by

D ! = !, +; !. �!

and, D~, the second total derivative operator, is given by

D' ! =  !,~i+ uj,t !, + 2uj !�i+ ujuk, !,k+ ujuk ! Jk. �!

Expansion of Du;: Using Eq. �!, Dui is expanded as

Dui ui,t + ujuig'

Expansion af D~h: Using Eq, �!, the second total derivative of the water depth, h, is
given by

D h = h ii + uj,thy' + 2ujhyi + ujukgh k + ujukhgk.2

!t can be observed that the momentum equation, Eq. �!, includes terms involving Du;, D~h
and D g which are the total derivatives. These terms can be expanded using Eqs. �! and
�!
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Drj = rtt + ujq�

= �  h + q! uj�� uj h�+ rI,! + ujq�

= � {h+ tl!uj�� ujh�.

From Eq. �!, it can be seen that Dh = h, + ujhz. Using this in Eq. �! gives

{8!Drj = �  h+ q!uj�+ ht � Dh.

Applying the total derivative operator, D, once again on Eq.  8!, we get

D'tl = [ �  h+ tl! uj�+ h,,j, + uk [ �  h + g! uj�+ h,,j �� D'h.

Simplifying Eq. {9! gives

D 7/:  h + Q!ujgt h tujg tltujg + h tt uk h + ri!ujyk
� uk h,k+ V,k!u�+ ukh,kt � D'h.

�0!

Substituting q t � � �  h+ rj!ukk � uk h k+ gk! in Eq. {10! gives

D ri = �  h+ g!uj~t � h,uj~+  h+ rl!uj�uk,k+ uk hk+ rip!uj�+ h,tt
� uk h + ti! ujzk � uk h,k + q k!ui�+ ukhkt � D'h..

Simplifying Eq. �1! gives

D tt =  h+ '9! {-ujgt + ujguk,k � ukujgk! + ukh,kt + h,tt � h tuj�� D h. �2!

It may be noted that the expansion of D2ti in Eq. �2! does not contain the time derivatives
of ti which would be present if Eq. �! is used to obtain the expansion, This absence of the
time derivatives of t7 aids in the numerical time-stepping scheme discussed later in Section 4.
Expansion of D h;: The D hi term in Eq. �! is expanded using Eq. �! as

D hi = hitt + uj,ithg + uj~thij + 2' ih>t + 2ujh,ijt �3!
+ uj,iukg'h,k + ujuk,ij h,k + ujuk jhik + uj,iukh jk + ujuk,ihgk + ujukh,tjk.

Expansion of D~tt: The second total derivative of the surface elevation, rj, can be simplified
by using Eq. �! and the continuity equation, Eq. �!. Using Eq. �! and substituting
gt = �  h+ tl!uj�� uj h�+ rj,j!, we get
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Expansion of D2rl t:

D n, = It; + n, !  -uj,t + uj,uk,k � uk'�k!2

�4!+  tt + 9!   ttj,ijt + <j,ij uk,k + ujg>k,ik >k,i<jgk ttkttj,ijk!
2+ vk,ik,kt + QkA,ikt + It,ttt tt tuj,ij It,itttjy D tt,i.

Thus, Eqs. �!-�!, �!-�! and �2!-�4! represent the complete set of governing equations.

3 Boundary conditions

8.1 Entrance Boundary

The entrance boundary is the boundary through which the wave enters. In the present
model, it will be assumed that the boundary of the domain. will be chosen in such a way
that the wave enters perpendicular to this entrance boundary. At this boundary, the values
of the surface elevation and the velocity are input. Therefore, the boundary conditions are

given by

 »!

where r! ,! t! and ut,, t! are the surface elevation and particle velocity of the incoming wave
and S, at the entrance boundary.

3.2 Lateral Boundary

At the lateral boundaries on the left and the right sides of the incorniug wave direction,
two types of boundary conditions may be considered, One is the waH condition were the
assumption is that this boundary acts as a wall thus refiecting all the waves back into the

In this section, the boundary conditions along the boundaries that surround the domain
are presented. These boundary conditions along with the governing equations provided in
Section 2, complete the definition of the boundary value problem which can be solved using
numerical methods such as the finite-difference method,
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domain and not permitting any wave to radiate out of this boundary. This condition can be
described and implemented, theoretically as well as numerically, very accurately. However,
this may not represent the actual conditions that occur in open oceans. A more appropri-
ate condition would be a radiation condition which permits the waves to pass through the
boundary. Such a condition is difficult to obtain theoretically without making any further
assumptions. In this study, we adopt a radiation condition based an the geometric principles
and implement it numerically.

Wall condition

The wall condition is given by the fact there is no flow across the boundary. This is written

where n; represents the unit normal to the lateral boundary.

Radiation condition

To implement the radiation condition based on the assumption that the velocity and
surface elevation vary smoothly near the lateral boundary, we use a second-order extrapo-
lation of the values on the finite-difference grid to obtain the values at an imaginary grid

To obtain the radiation condition, we make the assumption that the velocity components and
the surface elevation vary uniformly near this boundary. Such an assumption will be valid
only when the variation in the bathymetry is rninirnal resulting in very little refraction and
diKraction of waves. If the boundary does not satisfy these requirements, it is essential that
the boundary be moved to a location where this would be valid. Another option would be to
move the boundary farther by increasing the domain size and forcing the bathymetry to be
flatter by artificially changing the bathymetry near the lateral boundary, It may be noted
that increasing the domain size poses a disadvantage with increased number of computations
to be performed for the simulation. Thus, the decision on which boundary co~dition must
be chosen must be made considering the specific environmental data for the particular site
and the capability of the computer on which the simulation is performed.
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point outside the domain, The determination of this value permits the application of the
governing equation which can be used to obtain the solutions at this boundary,

3.3 Open boundary

b;1 =0 when i P j
�8!

= 1 when i = j,

Equation �7! can also be written as

g,t c+i tft!rj,it <1 ~ S o!l �9!
ni i cubi jnj  fthm! gi C S ft!

Under the assumption of a monochromatic wave, it can be shown that the unit normal to
the wave crest  see for example, Yang and Ertekin, 1991 9!! can be written as

9>ln< !=6 �0!
rfs rfs

where + represents the fact that the wave crest normal must be pointing in the direction of
wave propagation and not in the opposite direction.

3.4 Coastal Boundary

At the coastal boundary, the velocity normal to the boundary must be specified as zero.
This can be written as

�1!Q'Bi = 0 Xi C S  !

where n; denotes the unit normal to the coastal boundary, S ,!.

At the open boundary, the waves must be allowed to radiate outside the domain. The
Orlanski radiation condition is applied at this boundary, The Orlanski condition is given by

Oi7
g, = c, xi c S ,!

�7!
1ui,t = c ~ij> >i ~ S o!

j ttf!

where c = ~gh is the wave celerity, S ,! denotes the open boundary, n fp! =  ni f !, ~ ltd!!
represents the unit normal to the outgoing wave crest and fi> is the Kronecker's delta defined
by
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4 Governing equations for time-stepping

To facilitate the time-stepping of the governing equations, Eqs. �! and �!, it is necessary to
separate the terms involving the time derivatives and the rest. In this section, the continuity
and momentum equations, Eq. �! and Eq. �!, respectively, will be rewritten by gathering
the terms involving the time-derivatives and separating the rest. The details of the numerical
treatment of the time and spatial derivatives in the governing equations is presented in

Section 5.

4.1 Continuity equation

The continuity equation, Eq. �!, can be rewritten by moving the spatially dependent terms
to the right hand side and introducing a variable, Qi�I, so that

�2!9,t = Q qi

and

Qi�l = � I h+ rl!u;,, + u; h,, + g,;!], �3!

4.2 Momentum equation

uj,5 + uju'j j + grl,i + �   � D h�r14 h,j! + �g; + h,~![ h + rj!

  u jap + ujgup p upuj gp! + utah q< + h,~t � h,~uj~ � D hj2

+ h+ g!�D'q, � D'h !! = 0.

�4!

In Kq. �4!, it may be noted that the terms containing D~h, D~rj, and D~h;, expanded in
Eqs, �!, �3! and �4!, respectively, contain time derivatives of velocity, u,. It is necessary
to distinguish the terms containing time derivatives from the rest so that a time-stepping

In Section 1, an expansion of the term D~q was performed using the continuity equation,
Eq. �!, so that the time derivatives of ri are eliminated by representing g in terms of
� I h+q! u,];. After performing this substitution, the momentum equation, Eq. �!, contains
only terms with first derivatives of velocity, u;, and terms with only spatial derivatives. Using
Eqs. �!, �! and �2!, the momentum equation is written as
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D h = h�uji+Ti �5!

where

�6!Ti h,gi + 2ujh~i + Bjuk~h,k + ujukh~k~

D h, = u~,,!hq + uj,gh;j + Tp!;2 �7!

where

T[y]> = hist + 2uj ihgt + 2ujhiji + ~j iukghk + ujukij hk + ujukg �S!
h,ik + uj,iukhgk + ujuki hyk + ujukh,ijki

D rI; = �  h; + qi!uj�i �  h+ rI!ujijg+ T�!; � D h, �9!

where

T[3!i =  i + rishi!   j j k~k � k j~k!
+  h + ri!  uj,1/uk,k + uj Juk,'k uk,'ujgk ukuj ij k!
+ uk ih ki + ukh ikt + h <~i � h cu j;> � h;iuj

To handle the terms in Eq. �4! that do not involve D", D," and Dv, we introduce a variable,
T�!�such that

1T�!i =u ju;~ + gg, + �  �g, + h;! [ h + rl!  uj�uk' � ukuj~k!

+ukhk!+ hu � h,uj�� Ti]!.

And using this de6nition of T�!i along with Eq, �5!, we can rewrite Eq. �4! as

ui,t �g,i + h,i![ h+ rl![ujgg+ ujih�] � � [D h�g, � h,i!j + T�!i
I+ - h+ q!�D~Q,, � D h,i! = 0.

�2!

scheme such as the Modified-Euler method can be implemented. To aid in the separation of
terms with time derivatives, and for simplicity, we rewrite Eqs. �!, �3! and �4! in more
converuent forms as shown in Eqs. �5!, �7! and �8! below:
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5.1 Continuity equation

Under the Modified Euler method, the continuity equation, Eq. �2!, is used to obtain the

solutions for the surface elevation q. The equation to obtain the intermediate values, r!  !,
is given by

ri m! ~ i! + ~tR i! �7!

and the second-step equation is given by

ri�! i! l! +  R l! ~ R rn! !
2

�8!

5.2 Momentum equation

The momentum equation, Eq, �6!, is used to obtain the solutions for velocity u,. The

equation to obtain the intermediate values, u;, is given by rn!

� g,,h� m!  m!

�  h+ !  �,;+ � '!,'�'+ - h �!,',,'+ - ,',.'h�,' 'h;,!
� ! ~h  !

�  h+ g!  g,;+ � '!u,'�'+ - h+ r!!,',', + - u,",'h, + u,'"h�,! � 2 tQ �'!,

10

the time integration. The superscripts �!,  m! and �! will be used to represent the initial,
intermediate and final time levels of the Modified Euler method, respectively. Thus, at any

time step, given the initial values i7 '! and u '! at time step t, the values for the next time
step, At, r! ~! and u  !, are determined using the Modified Euler method, The initial values,
g '! and u '! are used to determine Q~�!,. and + from the equations mentioned above. i!  i!

These values are used to determine the intermediate values of iv ~! and u  !. The Modified
Euler method is second-order accurate with the error O Dt~!. The time stepping procedure
adopted to accomplish the Modified-Euler method is described in this section.
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6.1 First-order derivatives

The relationship between the 6rst-order spatial derivative in the physical and the computa-
tional domain of variable, f, is given by the chain rule as

�8!

�9!

For two dimensional problems, the Jacobian matrix is given as

x>~ i

~2, x +2, z

�0!

Since

�1!f,  =<>~;f~,

we get

Or,

f,z; = Z,',f, , �3!

where J~ represents the inverse of the Jacobian matrix g, It may be noted that the inverse
of the Jacobian matrix can be expressed in terms of the co-factor and determinant using

�4!

13

where the derivative,  ~~�can be obtained from the mapping achieved by the numerical
grid-generation. While using numerical grid-generation to obtain the mapping, it is more
convenient to represent the spatial derivatives with respect to  , rather than z,, Since
 ~,, involves the derivative with respect to  ,, it is necessary to represent  ~� in terms
of derivatives with respect to  ,. This can be achieved by de6ning the Jacobian of the
transformation as
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where Ci� is the co-factor of the element, gj, of the Jacobian matrix and J,  = ~JI!, is the
determinant of the Jacobian matrix, Therefore, using Eq. �4! in Eq. �3!, we get

f;,= � "ff;. �5!

It can be seen that by introducing the Jacobian of the transformation, Eq. �7! can be written
as Eq. �5! where the derivatives are with respect to  , instead of s;. For two-dimensional
domains, the co-factor tnatrix, C, is given by

~'24~ +2,fi
u

>l,fg >l,f g
  5 6!

and the Jacobian, J, is given by

�7!J = >l,fi>2,h <Lfg>2,fg.

6. 2 Second-order derivatives

Using Eq. �5! and applying the chain rule, the second-order derivatives can be expressed in
terms of derivatives in the computational domain as

f,*,*, =  f<, !,*,

� "  � "fz,!.,

� 2CjiCiafgaf  +   ! fr f/'
1 1

CjlCik fg~ft + s Cj~ fg,   JCieg  J AC~!

For brevity, defining Cj~i and Dip such that

~ �8!

1
Cije = � 2CjiCia �9!

1Dij g J2 Cji    CiQgg f, + !! �0!

we get

f>pxj Cij kif,f pe + Dij k'fz, .

Thus, Eqs.   55! - � 7!, using the generic variable, f, provide the expression for the first-order
derivatives in terms of derivatives in the computational domain.
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6.3 Expansion of derivatives in two-dimensions

�2!J = +ldi+26 +1,6+26>

1f, = J >~,6fzi+<~,  f,6! �3!

1f,, = J ~i<,f,6+2:i,ef,6! �4!

f,xi*< = J2  ~ai6f,66 2+2,6+>,6f66 + +2gi6~6!
2~~ [ >zg~<2Z 6 2>2Z >sZ >s 66 + >a< <2xi6! ><z~f<i + >> 6f 6!

2 2+  2' >ki6 +2@»6 i 66 + 2,6 > 66!  > 6f>6 + *~ 6f>6!j >

�5!

and

1f,~~~i = ~  »,6f,66 2>1,6 s1,6f 66 + *i gi f &6!
1 2gg [ +ig',*24i6 +>Xi+>,6+2~66 + +i/i+>Ai6! +>4~f 6 + ~<,6f 6!
2 2+  lpga >Ai6 +>,6~>Xa+~ki6 + +>,6+>,66!  266i + 2A'i Gi	

�6!

Eq. �1! in Section 6.2 provides a compact form of the second-order derivatives. The expan-
sion of Eq. �1! and its coefBcients are given below:

f xi~i =  Cllllfgi6 + C1112fgi6 + Cll21f 66 + C1122f 66 + Dllf 6 + D12f 6! �7!

f ~,<, =  C2211fgi6+ C2212f 66++C222lfg26 + C2222fgy6+ D2l fbi+ D22f 6!. �8!

15

The expressions relating the derivatives in the physical domain and the computational do-
main are presented in Sections 6.1 and 6.2. These expressions are presented using indicial
notation and are applicable to two-dimensional as well as three-dimensional computational
domains. In this section, these expressions for the derivatives are expanded for the two-
dimensional domain so that the indices i,j and k take the values of 1 and 2 for the two

independent directions and are presented below:
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where

Dill +11Z1!fe +12Z24g

D112 � ~12Z2,fx +11Z1,fz

D221 +21Zl fg +22Z2, g

D222 +22Z24! P21Z l,Q

�9!

such that

2 2 Z2!f~Z24!h � 2Z2 f! Z2!f2Z2 f!G Z2 f! Z2�6!
11 J3

2 2 Z2,fg 14! f! 2!f! 2,6 1!f� + 2,f> 1!Sf'!
~12 3

2 2  1 g 2,GG ZlkiZ1!GZ2,f!fa + Zl!f!Z2,bb!
�o!

D21 J3
2 2 Zl,fgZ1!f!f! ~ZlkiZ1>bZl,f� + Zl,f!Zl,f26!

22 J3

6.4 Finite-difFerence formulas

Since the problem is solved in a curvilinear coordinate system, and to estimate the deriva-
tives with respect to z� it is essential to estimate the derivatives with respect to  ;. This can
be seen from the expressions for the derivatives presented in Section 6.3. Using bracketed
subscripts of the form, [i, jj, to represent the nodal locations along the � and � direc-
tions, respectively, the finite-difference formulas used to estimate the partial derivatives with
respect to � and � are given as

~ '+1 dl fi'-1 il
J/i = ! �2!

f[i /+1! f[i j � ll
2

 Y3!

16

2
Z2 ff

C1111 = ! J2
2

Zl,f2
C2211 � ! J2

2
Z2gi Z2!� Z2 f!C1112 C1121 J2 ! C1122�

2
Zlgi +1,6 1, !

C2212 C2221 ! C2222J2 J
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f[i+lz+i] f[i-sq+i] � f[i+ig-i] + f[i-iq-]]
,GC~ 4

�4!

�5!fg, ! = f[i+ig[ � 2f[ig + f i-i,g!'

and

�6!f,rg g � f[i j+1! 2f[ig] + f[ig'- i! ~

It may be noted that these formulas are second-order accurate, The formulas given in
Eqs. �2!-�6! can be used to estimate the derivat,ives with respect to xi using Eqs. �2!-
�6!.

7' Successive Over Relaxation

To facilitate the iterative scheme, it is essential to rewrite the governing equation in
a form where a new iterative value can be predicted using the iterative value from the
previous iteration. The momentum equation given by Eq, �6! contains the first-order and
second-order derivatives of u;. These will be approximated using the equations in Section 6.3
and finite-difFerence formulas in Section 6.4. Let us consider the iterations performed at any
arbitrary node [i, j[. It may be noted that only the equations for the second-order derivatives,
Eqs. �5! and �6!, involve the values at the node [i, j]. This means that only the ui~,, terms
contain the unknowns u;[i�-]. It may be noted Eqs.- �9! and �0! are similar in form, with the
main difference in the superscripts indicating the time-stepping levels. In this section, we

17

In Sections 4-6 of this report, the time-stepping procedure, Eqs. �7!-�0!, and the spatial
discretizations, Eqs, �2!-�6!, reduces the problem into a, solution of linear system of equa-
tions. With the values of the surface elevation, r[, and the velocity, u,, known at the previous
time steps, the values at the current time step form the unknowns of the linear system. This
linear system of equations is in the form of a banded system and the values at the previous
time step are close to the unknown values at the current step, Therefore, it is more efficient
to use an iterative method such as the successive over-relaxation method  SOR! compared
to non-iterative methods such as Gaussian elimination. In this section, the details of the
reduction of the momentum equation, Eq. �6!, to a form convenient for the implementation

of SOR is presented.
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Introducing the variable Ar for simpli6cation, we write the equation for uq as

� �  h+ r!!hl!u, � her!ru, � -  + r!!, �= A!�!  >! �! 2  >! �7!

where

Az =  h + r!!u~ rh~ +  h + g!h >2uz + h zq,>u~1 �! 1 �! �!

+ �  h + g! ~,2 +  h + r!! ~g,i + 2 !~ �! I h,i �!

 r!  m!+ 2  ~[a]l+q t]l!

�s!

Using Eq. �1! in Eq, �7!, we get

u, � �  h+ g!h,y!uy h fg]Q! >!  ~!

� �  h + 'g! Clljk uy t t> + Dlkuyg ! = Al ~1 ~  ~!  g!
�9!

Equation �9! can be expanded to give

tl  � �  h + g!h pj u! � h pg !ug a! 1  >!  >!

�!  ~! �! h + g!  C11!lu< < < + Cl~ygu> <|<z + Clip~ u> <zt + Cyy~u< ~>i>!

+  Dllu1fr + D12uy,g~! Ar�!  >!

 so!

Simplifying Eq.  SO!, dropping the superscripts and substituting the derivatives using the
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explain the implementation of the SOR. We will consider only Eq. �0! and the procedure
for Eq. �9! will follow similar principles, To perform successive over relaxation, only the
terms involving u; must be retained on the left hand side and the rest must be moved to the
right hand side. We have terms such as uj giving rise to terms with u; when i = j and the
other terms when i g j. Since only the terms when i = j are needed on the left hand side,
we need to move the terms with i g j to the right hand side. To demonstrate this, and for
simplicity, we consider the equation for the velocity component u| along the rq direction.
The derivation for the other velocity component, uq, can be obtained in a similar fashion

and, therefore, will not be presented here.
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Qnite-difference formulas given by Eqs. �2!-�6!, we get

t 1 2
1 � �  h+ ri!h 11 � hlrll + �  h+ g!  Cllll + C1122! 111[i~]

1

3
 h + lj! [Cllll  ul[i+lg'j + 111[i-lg]! +

1

4'
 C1112 + C1121! >1[i+le+1] >1[i � 1 j+1] <1[i+lg � 1] + >1[i-lg-l!!

+ C1122 >1[ig+1] + >1[i'-1]!]
1+ - [Dll ul[i+1 j] >1[i � lg]! + D12 til[i /+1] +1[i j-1]!] ~1
2

 81!

Rearranging the terms in Eq.  81!, we get

~1 + 3  h + 9! [Cllll  >1[i+1 j] + ul s-lg']!
4' C1112 + C1121! tll[i+lg+lj ill[i-lg+1! 111[i+lan-1] + ul[i-1 j-1]!

+C1122 u1[i /+1! + >1[i j-1]!]
+ 2 [Dl 1  ul [1+1, j! +1[i � 1g! D12  +1[iy+1! ul [i j-lj! ]1

 82!

[1 � �  h+ q!h 11 � h,ill 1 + - h+ lj!  C1111 + C1122!j
Equation  82!, and a, similar equation for u2[t, j], can be used, in conjunction with SOR, to
solve for ul and u2. The derivatives on the right, hand side of Eq.  82! will be obtained by
using the derivatives' representation in a curvilinear-coordinate system given by Eqs. �3!-
�6! and the finite-difference formulas given by Eqs. �2!-�6!.

8 Test cases

8.1 Ramp case

Here, we consider the diffraction of a solitary wave propagating over a ramp or, in other
words, a shelf, This case was considered by Ertekin and Wehausen �987![ j where the
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In the previous sections, the theory and numerical techniques to obtain the solutions of
the Green-Nagdhi equations are presented. In this section, we consider certain example
cases for which solutions have been obtained using other shallow-water wave theories such
as the Boussinesq equations. A comparison of the results obtained using the Green-Nagdhi
equations is made with the previously obtained results.



Refraction 8c Diffraction: GN equations8 Test cases

Figure 1: Schematic diagram of wave diffraction due to a ramp

To facilitate an accurate comparison of the results, we choose one of the cases considered
by Ertekin and Wehausen �987! i i with all the parameters kept same, with the only exception
being the three-dimensionality of the computer program in the case considered here.

The incoming wave is a solitary wave with a dimensionless height of 0.12 which, as in
Ertekin and Wehausen �987!i~i, is incorporated using initial conditions. At time t = 0, the
wave is set with the maximum peak at xq � � 30. At this instant of time, the wave pro&le
for a wave of height of 0.12 results in almost negligible surface elevation at the incoming
boundary. It may be noted that a similar approach is adopted by Schember �982!i i. It is
believed that such an approach avoids the numerical instability that occurs at the incoming
boundary due to the inaccuracies in the 6nite-difference representation of the third-order
derivatives of velocity at the incoming boundary.

The ramp starts at the location xI � � xs � � 40 which slopes from a constant depth at the
incoming boundary to a value half of that at the outgoing boundary. The location of the

20

Green-Nagdhi equations are used to study soliton propagation in different setups, This case
was also considered by Schember �982!lsj where Boussinesq equations are used to study the
wave propagation over different sizes of ramps and shelves. In Figure 1, a schematic diagram
of the setup considered here is presented, where hj is the depth at the incoming boundary,
hz is the depth at the outgoing boundary, xL, is the x~-coordinate at the incoming boundary,
x~ is the xq-coordinate at the outgoing boundary, xs is the location of the start of the ramp
and LR is the length of the ramp.
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ramp is such that at time t = 0, the surface clevatians at the ramp in the initial wave profile
are negligible. The ramp is of length, La �� 10 which results in a slope of 1:20.

A dimensionless grid spacing of 0.1 is chosen and, in order to satisfy the Courant condition
for numerical stability, the time step is set as O.l. The simulation is carried out for 900 time
steps. The wave profiles at t = 20, 30, 50, 70 and 90 are presented in Figure 2, These profiles
compare very well with the results presented in Figure 6 of Ertekin and Wehausen �987!l3i.

The evolution of the surface elevations at different numerical gage locations are presented
in Figure 3, These results also compare very well with the results presented in Ertekin and
Wehausen �987! i3i.

8.2 Mount case

In this section, we consider a mount or, in other words, submerged shelf as shown in Figure 4.
We consider this case which was analyzed by Ertekin and Becker �996!i i to study the
effectiveness of this numerical model in handling the diffraction of cnoidal waves. In this
section, the results of the simulation of diffraction due to a submerged shelf is presented
for incoming cnoidal waves and is compared with the previous results  Ertekin and Becker,
1996! l'i.

A schematic diagram of the setup is presented in Figure 4. The domain extends from
x~ � � x~ to xq � � xR. The description of the location of the mount is accomplished by using
the variables, xz, xa, xc and xD. The water depth at the submerged shelf is represented by
hq. In the case considered in this study, we have used the following values to represent the
mount:
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xg = 203.7, xa � � 205.1, xc �� 208.1, and, xg! � � 209.5.

These parameters correspond to the values used in case 6 of Ertekin and Becker �996!l2i.
The height of the incoming cnoidal waves is taken as 0.1. Still water condition is used as
the initial condition and therefore, in order to ensure numerical stability, the incoming wave
velocities and surface elevations are modulated using an exponential decay function of the
form of 1 � e ". In this expression, e represents the modulation constant which takes values
in the range of 0.5 to 1.0. In the calculations performed here, we have taken s to be 1.
A rectangular grid with a grid spacing of 0.1 is used in conjunction with a time step of
0.07 ensuring the numerical stability of the computations by satisfying the Courant stability
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Figure 3: Time evolution of surface elevations at different gages for uniform ramp case

8 Test cases

0.2

i0.15

0,1

0.05

<.05

0.2

i0.15

0.1

0,05

%.05

0.2

i0.15

0,1

0.05

-0.05

Refraction Zc Diffraction. GN equations



Refraction 8c Diffraction: GN equations8 Test cases

1 >A

Figure 4: Schematic diagram of the setup for the mount case

8.3 Curved-ramp case

In order to confirm the validity of the computer program in a fully three-dimensional en-
vironrnent, we consider a ramp that is curved using a cosine-square function. This case
was considered by Schember �982!ill where Boussinesq equations are used to simulate the
diffraction of solitary waves. To obtain a curved ramp, the ramp is shifted by the function
f xq! given by

f x! =A�, coa y<y,
2'

 83!

where A�~ is the shift distance and y, is the width of the curved section. The schematic
setup is shown in Figure 7. The case considered here is described as the "narrow concave"
case in Schember �982!l i where a ramp of slope 1:10 is curved using Eq.  83! with A, ~�
taken as 10.
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condition. The simulation is performed for 8000 time steps resulting in a wave profile at
time t = 560 as shown in Figure 5. This compares reasonably well though there are some '
notable difFerences on the right hand side of the mount with figure 2 d! of Ertekin and Becker
�996!l i, However, the time evolution at numerical wave gages 3 and 4 located at xi � � 208.1
and x> � � 209.5, respectively, shown in Figure 6 are in excellent agreement with the results
obtained by Ertekin and Becker �996!ill.
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Figure 5: Wave pro6le at t = 560 for the mount case
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Figure 6: Time evolution of surface elevations at numerical gages for the mount case
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Figure 7: Schematic diagram of the setup for the curved-ramp case
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To avoid numerical instabilities, the bathymetry was smoothed by taking a weighted-
ayerage of the depth values at the neighboring points at a finite-difference node. This
operation is deemed necessary due to the presence of derivatives of depth upto the third-
order, In Figure 8, a three-dimensional plot of the curved-ramp bathymetry as used in the
present calculations is presented.

It can be seen from Eq.  83! that the domain is symmetric about the s> � x> plane and
therefore, by using a symmetry condition at xq � � 0, we need to obtain solutions in only one
half of the domain and the mirror image will provide the solution for the other half.

In Figs. 9-12, we present three-dimensional plots of the surface elevations at times t =
20, 40, 60 and 80. These plots compare very well with the three-dimensional plots presented
by Schember. The corresponding contour plots of the surface elevations are presented in
Figs. 13-16. It may be noted that due to different contouring algorithms used and due to
the fact that the surface elevations are close to zero at most of the domain, a very close
comparison of the contour lines with Schember's results is not possible. To provide a more
lucid comparison of the results, we present the wave profiles at sections along the x~ direction
at the wall and the center lines in Figs. 17 and 18. It can be seen that these results do compare
very weH providing the necessary validation for the three-dimensional cases.

To evaluate the ability of the model to simulate the propagation of periodic waves subject
to varying bathymetry, we consider cnoidsl waves as the incoming waves. The other input
parameters are the same as in the solitary wave case presented above. We assume the still
water condition as the initial condition and cnoidal waves are modulated to avoid numerical

instabilities.

In Figs. 19 and 20, the diffracted waves are shown in the surface elevation plot of the
cnoidal waves at time, t=160. The two cases differ in the application of the lateral boundary
condition. In Figure 19, a wall condition was used, while in Figure 20, the radiation condition

28

The length of the domain for the problem under consideration is taken as 120 with the
width as 32. To facilitate the input of the solitary wave as the initial condition, similar to
the two-dimensional uniform ramp considered earlier, the computational domain is set from
-30.0 to 90.0 in the x> direction and. 0 to 16 in the xq direction. A grid spacing of 0.4 is
used to discretize the domain into a rectangular grid. A time step of 0.4 is used in these
calculations just as in Schember �982!i8i.
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Figure 8: Bathymetry for the curved-ramp case
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Figure 9: Wave profile at t = 20 for the curved-ramp case
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Figure 10: Wave profile at t = 40 for the curved-ramp case



Figure 11: Wave pro61e at, t = 60 for the curved-ramp case
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Figure 12: Wave pro6le at t = 80 for the curved-ramp case
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Figure l3: Surface elevation contours at t = 20 for the curved-ramp case
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Figure 14: Surface elevation contours at t = 40 for the curved-ramp case Schematic diagram
of the setup for the curved-ramp case
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Figure 16: Surface elevation contours at t = 80 for the curved-ramp case
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Figure 17: Wave profiles at wallcut for the curved-ramp case
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Figure 19: Cnoidal-wave profiles for the curved-ramp case with wall lateral-boundary con-
dition
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Figure 20: Cnoidal-wave profiles for the curved-ramp case with radiating lateral-boundary
condition
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was used. It can be seen that the surface elevations are close to normal in the case of Figure 19
due to the wall condition, while this is not the case in Figure 20. In Figs. 21 and 22, we
show the contours of surface elevations for the same instant in time.
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Figure 21; Cnoidal-wave contours for the curved-ramp case with wall lateral-boundary con-
dition

9 Summary
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The problem of wave propagation subject to varying bathymetry is considered using the
Green-Naghdi equations. The theoretical formulations of the physical problem is presented.
The governing equations are written in a simplified manner to facilitate the numerical imple-
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Figure 22: Cnoidal-wave contours for the curved-ramp case with radiating lateral-boundary
condition
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mentation. The finite-difference method in conjunction with the grid generation is adopted
to spatially discretize the domain and the Modified-Euler method is used to perform tirne-
integration. The special treatment of the boundary conditions have also been presented.
The capabilities of the model have been demonstrated and validated by considering three
cases:  a! ramp,  b! mount and  c! curved-ramp. Results indicate very good comparison
with the previously known results.
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Appendix A

gn8d and Utilities - User's Manual

Introduction

This manual describes the usage of the following programs:

gn8d - This is the main program which performs the simulation of wave diffraction due to
varying bathyinetry  Sce Sections 2-5!.

gngrid - This program generates the data for the grid which becomes the input to gn3d
 See section 6!.

gndepth - This program generates the data for the depth which becomes the input to gn3d
 See section 7!,

gnwvernkr - This program generates the data for the incoming wave which becomes the
input to gu3d  See section 8!.

gn3dtec - This prograin generates tecplot data files from the binary output files of gn3d
 See section 10!.

2 gn3d Commands syntax

The programs require inputs in the form of batch files where commands are written one
after the other with one command per line. The format of the command syntax defining
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any general command is described below. The reader is referred to section 4 where a sample
batch file is presented. The programs are executed at command line as follows:

8 gngrid wave.grd

0 gndepth wave.dep

8 gnwvemkr wave.wve

8 gn3d wave.gn

8 gn3dtec wave.tec

where wave.grd, wave.dep, wave.wve, wave.gn and wave,tec are the batch files for programs
gngrid, gndcpth, gnwvemkr, gn3d and gn3dtec respectively.

2.1 Command types

Comments

Any line that starts with 'g' character is treated as comment.

Assignments

The parameters are assigned using an assignment statement of the following syntax:

<parameter name> = <parameter value>;

For example:

vel filter on ~ .TRUE.;

where velMilter on is the parameter name and .TRUE. is the value.
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The main input to gn3d and utility programs is done through a batch Bie consisting of
commands. The commands are of three types:
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Execution statements

The execution statements are commands with arguments placed inside parenthesis. These
are used to execute certain tasks and have the following syntax

command name arg1, arg2, arg3, ...!;

For example

quad bdry gen�001,6,0.,0.,400.,0.,400.,2.,0.,2.!;

where quad bdry~en is the command that generates a quadrilatel boundary and the values
4001, 5, ... specify how this is to be performed. The arguments can be to type real, integer
or character string and the number of arguments depends on the command.

2.2 Input data types

The parameter value will belong to one of the following data-types:

 real! The real numbers are to be entered either using a non-precision format such as 3. 14159
or using double precision format such as 3.14159d0.

 integer! The integers numbers are to be entered as a series of digits.

 string! The strings are entered within double quotes, for example, as "Hello" in assignment
statements and without quotes in execution statements,

3 Input commands of gn3d

The parameters used in gn3d are discussed in the following sections.

3.1 Filtering related inputs

Filtering and Successive over relaxation related inputs are described below:

 boolean! The boolean values are entered using . TRUE. and . FALSE just as in Fortran language.
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Filter time step interval

The interval in terms of time-steps derring which 61tcring is to be done is represented by
filter time step interval  integer!.

Example;

filter time step interval = i;

Filter velocity

The boolean parameter, vel f ilter on  logical!, determines whether 61tering of velocity
must be performed or not.

Example:

vel filter on = .TRUE.;

Filter surface elevation

The boolean parameter, zeta/ilter on  logical!, determines whether 6ltering of surface
elevation must be performed or not.

Example:

zeta filter on .FALSE.;

Depth smoothing

Example:
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The real parameter, depthMilter weight  real!, is used to control the 61tering. A weight
of 1.0 means that the importance to the value at a node is 100Fa compared to its neighboring
nodes and, therefore, results in no 6ltering. Any value less than 1.0 can be used to achieve
smoothing of the depth with a value of 1.0 representing zero smoothing and a value of 0
representing maximum.
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depth filter weight = 0.6d0;

The integer parameter, no of depthMilters  integer!, is used apply smoothing re-
peatedly. A value of 10, for example, means that smoothing will be applied 10 times,

Example:

no of% depth filters = i0;

Therefore, a combination depth filter weight and no of depthZilters can be used
to control depth smoothing.

3.2 SOR related inputs

Filtering and Successive over relaxation related inputs are described below:

Maximum iterations

The maximum number of iterations that is permitted while performing Successive over re-

laxation  SOR! is specified using maxwo of iterations  integer!.

Example:

max no of iterations = i00;

SOR tolerances

Example:

tolerance ist level = i.d-3;

tolerance 2nd level ~ i.d-4;

Successive over relaxation is used to solve the Modi6ed-Euler inethod which involves two
steps. The tolerances for these two steps can be specified using tolerance ist level  real!
and tolerance 2nd level  real! respectively. In general, using the same tolerances for
both levels is recommended.
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3.3 Input fi1es

Grid input Qle

The grid used for the simulation is input from the grid input file which is a FORTRAN
binary fil. The format of the file is described in section 6. The file name is input using the
parameter, grid input f ile  string!.

Example:

grid input file = "./inputs/grid.dat",

Bathymetry input file

The bathymetry used for the simulation is input from the bathymetry input file which is a
FORTRAN binary file. The format of the file is described in section 7. The file name is
input using the parameter, bathymetry inputZile  string!.

Example:

bathymetry input file = "./inputs/depth.dat";

Wave input file

The wave used for the simulation is input froin the wave input file which is a FORTRAN
binary file. The forinat of the file is described in section 8. The file name is input using the
parameter, wave input file  string!.

Example:

wave input file "./inputs/wave.dat";
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Binary input files are used to specify the grid, bathymetry and the incoming wave, The
filenames of the input files are entered as described below:
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Initial condition input file

The initial condition used for the simulation is input from a FORTRAN binary file
whose format is described in secti'on 8, The file name is input using the parameter,

initcdn input file  string!.

Example:

initcdn input file = "./inputs/initcdn.dat";

8.4 Output related inputs

The parameters related to outputs are described below:

Output time step interval

Example:

output time step interval = 10;

Surface elevation output file

The surface elevations are stored in FORTRAN binary format into the file specified by the

parameter zeta output f ile  string!.

Example:

zeta output file = "../outputs/zeta,out";

The details of the output format is presented in 5.3.

As the program undergoes time-marching, output of the crucial parameters such as velocity
and surface elevations may be performed in a regular time-step intervals. The parameter,

output time step interval  real! can be used to specify this.
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Mesh output file

The mesh or grid details are stored in FORTRAN binary format into the file specified by
the parameter mesh outputZile  strins!.

Example:

mesh output file = "../outputs/mesh.out";

Velocity output file

Example:

velocity output file "../outputs/vel.out";

The details of the output format is presented in 5,3.

Case details output file

The case details are stored in text format into the file specified by the parameter

case details output file  string!.

Example:

case output file ~ ".,/outputs/case.out";

Numerical gages

Numerical gages can be installed to obtain time series of values at any iocation. The gage
details are stored in text format into the file specified by the parameter gage output f ile
 string! .

Example:

The velocity components are stored in FORTRAN binary format into the file specified by
the parameter velocity output file  string!.



3 input commands of gn3d Refraction 5. Diffraction: GN equations

gage output file = "../outputs/gages.jnk";

Example:

add gage = 100.dO, 200.dO;

Log file

A log of actions performed is stored into the log 6le specified by the Parameter
log output file  string!.

Example:

log output file "../outputs/gn.log";

Delete old output files

Since the output 6les are new files, before specifying the output Bles, it is essential to ensure
that files with the same paths and names do not exist on the system. The user can use the
rm command to delete the files from the system. The user is cautioned that the 6les wll be
deleted with no questions asked.

Example:

rm "../outputs/case.jnk";

3.5 Execution statements

There are two simple commands to execute the program. The first one is start and the
other is end These commands do not have any arguments and are, therefore, entered in a
simple fashion as shown below.
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The location of the gages can be speci6ed using add gage command. The right hand
side of the assignment has two components with the first coinponent being the zi loca.tion
and second being the xq location of the gage.
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Example:

¹ � --- Start the actual run � ��

start;

¹ � � � End the program � ��

end;

4 Sample commands Ale

To run a particular case, the batch commands are input into a batch file. This batch file
becomes au argument to the executable at the command-line. For example,

$ gn eave.gn

¹ -- � � Open log f ile �---

rm "../..!outputs/mount/gn,log";
log output file "../../outputs/mount/gn.log";

¹ � -- Delete old files ��

rm "../.,/outputs/mount/gages.jnk";

rm "../,./outputs/mount/case.jnk";

rm "../../outputs/mount/zeta.jnk";

rm "../../outputs/mount/vel.jnk";

rm ",,/../outputs/mount/mesh.jnk";

rm "../../outputs/mount/inceave,jnk";

¹ � � - Input variables ��

case description = "Test Case";

case number 1000;

will run the case described in the file "wave.gn". A sample set of commands which goes into

such batch file are given below:
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no of time steps = 8000;

grid input file = "../../teats/mount/grid.jnk";
bathymetry input file = ",./,./tests/mount/depth.jnk";
wave input file = "../../tests/mount/wave.jnk";
initcdn input file = "../../tests/mount/initcdn.jnk";
no of depth filters = 3;

depth filter weight = 0.9;

gage output file = ".,/../outputs/mount/gages.jnk";
add gage i99.7dO, 2.5dO;

add gage = 205.idO, 2.5dO;
add gage = 208.idO, 2.5dO;

add gage = 209.5dO, 2.5dO;

add gage = 213.7dO, 2.5dO;

¹ � � � Set output f iles � - ��

zeta output file = "../.,/outputs/mount/zeta. jnk";
velocity output file = "../../outputs/mount/vel,jnk";
case output file = "../../outputs/mount/case.jnk";
mesh output file = ",./,./outputs/mount/mesh.jnk";
incoming wave output file ~ "../../outputs/mount/incwave.jnk";

max no of iterations = 300;

filter time step interval = i;

vel filter on = .TRUE.;

zeta filter on ~ .TRUE.;

tolerance ist level = i.d-4;

tolerance 2nd level = i.d-4;

sor relax factor 0.6d0;

output time step interval 500,

¹ � � - Start the actual run � �-

Refraction 5, Diffraction: GN equations
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start;

¹ � � - End the program � �-

end;

5 Outputs

The outputs of gn3d are presented in this section.

5.1 Case details

All the small details of the case is sent to thc file specified by the input parameter

case output file.

The data is written using sequential unformatted fashion which is described in below:

write  UNIT = zeta output unit! itstep

write  UNIT = zeta output unit!

  zeta i, j!, i = i, ni!, j i, n2!

where itstep is the time step number and zeta is the surface elevation.

5.2 Surface elevations

The data is written using sequential unformatted fashion which is described in below:

write  UNIT mesh output unit!

ni, n2,   xi i, j!, i i, ni!, j ~ i, n2!
write  UNIT = mesh output unit!

ni, n2,   x2 i, j!, i ~ i, ni!, j = i, n2!

The surface elevations at a time step specified by the time step interval parameter,
output timewtep interval, is saved- in FORTRAN binary file specified through the in-
put parameter zeta output/ile.
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write  UNIT = mesh output unit!

ni, n2,   h i, j!, i = 1, ni!, j = i, n2!

where itstep is the time step number and  xi, x2! are the coordinates of the nodal point
at  i, j!.

5.3 Velocity components

The velocity components at a time step specified by the time step interval parameter,
output tisie step interval is saved in FORTRAN binary file specified through the input
parameter zeta output f ile,

The data is written using sequential unformatted fashion which is described in below;

write  UNIT = vel output unit,

where itstep is the time step ~umber and  ui,u2! are the velocity components.

6 gngrid - Elliptical grid generation

The program gngrid is used to generate the mapping between the physical domain and the
computational domains. The corninands supported by gngrid are presented below.

The command load bdry file~arne! takes the file name containing the boundary data as
the argument. Internally, the boundary data is read using the following code;
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write <UNIT = vel output unit,

  ui i, j!, i = 1, ni!, j ~
  u2 i, j!, i = 1, ni!, j =

6.1 Commands

Load boundary data

ERR ~ 110! itstep

ERR = 110!

1, n2!,

1, n2!
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read  UNIT=iO, FMT=+! m, n

read  UNIT=iO, FMT=+!  x i, i!, i = i, m!

 y i, i!, i

 x n, i!, i =

 UNIT=io,

 UNIT=iO,

FMT=+!

FMT-*!

read

read

j = i, n!read  UNIT=i0, FMT=+!

where m and n are the two dimensions of the grid and x and y represents the two coordinates

at all boundary nodes.

Example:

Ioad bdry data bdry,dat!;

Generate quadrilatrral boundary

A quadrilateral shaped domain can be generated using quad bdrygen.

Syntax:

quad bdry gen nx, ny, xi, yi,, x4, y4!;

where nx and ny are the number of nodes along x and y directions. xi, yi, etc. represents
the coordinates of the four corners of the quadrilateral.

Example:

quad bdry gen�00i,6,0.,0.,400.,0.,400.,2.,0.,2.!;
xo

read  UNIT=i0, FMT=*!

read  UNIT=i0, FMT=+!

read  UNIT=i0, FMT=+!

. read  UNIT=iO, FMT=~!

 y n, i!,

 x j, i!,

 y j, i!,

 x j, m!,

 y j, m!,

i, m!

i, m!

i, m!

i, n!

i, n!

i, n!
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Generate initial guess grid

The command generate initial grid  ! is simply called to generate the guess mesh before
grid generation begins. This command has no arguments.

Example:

generate initial grid !;

Generate curvilinear grid

To generate the curvilinear grid, the command curvilinear gridgen  ! must be issued.
This command has no arguments.

Example:

generate curvilinear grid !;

Find maximum grid spacing

Example:

find maximum grid spacing !;

Delete a file

Since the output files are new files, before specifying the output files, it is essential to ensure
that files with the same paths and names do not exist on the system. The user can use the
rm  filename! command to delete the files from the system. The user is cautioned that
the files will be deleted with no questions asked.

Example:
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Sometimes, it is useful to determine the maximum grid spacing. This can be done by calling
f indmax spacing  !, This command has no arguments,
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rm   ., /output s/case. j nk!;

Save the grid in gn3d binary format

The generated grid can be saved in the following binary format using the command:
save grid for gn3d  filename!.

write UNIT = io! m, n

write UNIT 10!   x j, i!, i 1, m!, j = 1, n!,
  y j, i!, i=i,m!, j=1, n!

This format is understood by gn3d and thus, this output file becomes input file for gn3d.

Example:

save grid for gn3d grid.bin!;

Save the grid in tecplot format

Example:

save grid for tecplot grid.pit!;

Save SOR relaxation coefBcients

Along with grid generation, gn3d can also generate relaxation coefficients for SOR. These
can be saved into a file using save sorwelax coef s  f ilemane!,

Example:

save sor relax coeffs relax,jnk!;

61

The generated grid can be saved in tecplot binary format using the command:
save grid for tecplot  filemsjse! This format is understood by Tecplot and thus, this
output file becomes input file for Tecplot,
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Display this help message

Example:

help  !;

Quit the program

To quit, simply call quit  !.

Example:

quit  !;

6.2 Sample commands file

This is a sample commands file for gngrid.

quad bdry gen�001,6,0.,0.,400.,0.,400.,2.,0.,2.!;
generate initial grid !;
curvilinear gridgen !;

rm grid.pit!;

rm grid.jnk!;

save grid for gn3d grid.bin!;
save grid for tecplot grid.pit!;

quit  !;

7 gndepth - Bathymetry generation

gndepth is a utility program that can be used to generate the bathymetry inputs for gn3d.
The commands supported by gn3d are given below,
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The help command, help  !, displays the syntax of all the commands of gngrid. This
command has no arguments.
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Load grid

To generate a bathymetry, one must load a grid file so that the depth at the nodal point
locations can be determined. This is achieved using load grid  grid input file!. The
grid input file is of the same format as grid input file for gn3d. See section 6 for more details.

Example:

load grid grid.jnjr!;

Load bathymetry

l. Obtain depths at random locations,

2. Using programs that can triangulate  Tecplot, matlab, etc.! obtain a finite element
mesh made of linear triangle, and

3. Use this finite element mesh and linear shape functions to interpolate and determine
depth at any point inside the domain.

Therefore, a finite-element mesh containing the bathymetry data is input to gndepth and
must be loaded using the command, load bathymetry  bathymetry input file!. Iiiter-
nally, this command reads binary data using:

read UNIT = 10! nmnpb, nmelb

print +, 'Reading coordinates...'
read UNIT = 10!  xb i!, yb i!, zb i!, i~i, amnpb!
print +, 'Reading elements...'
read UNIT ~ 10!  ielnmb�, i!, ielnmb�, i!, ielnmb�, i!, i=i, nmelb!

where nmnpb is number of nodes, nmelb nuinber of elements, xb and yb coordinates of the
nodal points and ielnmb represents connectivity.

Typically, the bathymetry data is available a random locations. This means that some kind
of interpolation must be performed to obtain the depths at the nodal points. The idea
adopted in gndepth is as follows:
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Example:

load bathymetry input file grid.jn3s!,

Convert latitide-longitude to meters

When digitizing bathymetry using nautical maps, a coordinate transformation be-
tween latitude-longitude system to meter system must be performed. The command
convert lat long toweters  ! performs this transformation. This command has no ar-
guments.

Example:

convert lat long to meters !;

Determine depths at nodes on grid

To determine the depths at the node locations using interpolation of 6nite-element mesh with
linear triangles, the command find depths at~idwodes  ! can be used. This command
has no arguments.

Example:

f ind depths at nodes  !;

Generate ramp-like shelf bathymetry

Example:

generate shelf bathymetry�0.dO, 7.dO, 40.dO, 50.dO!;
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gndepth can produce a ramp-like bathymetry using the command,
generate shelf bathymetry  h1, h2, xstart, xend!, where hi and h2 are the
depths at two sides of the ramp and xstart and xend are the starting and ending points of
the ramps.
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Generate submerged shelf bathymetry

A submerged-mount type bathymetry can be generated using generatemount bathymetry
 hi, h2, xi, x2, x3, x4! wherehi andh2 are the depthsatoutsideandinsidethe mount
respectively, x1, x2, x3 and x4 are the x-locations of the four points that represents the
mount.

Example:

generate mount bathymetry i.d0, .3d0, 203.d0, 205.d0, 208.d0, 209.d0!;

Save bathymetry for gn3d

write UNIT ~ 10! m, n

write UNIT = 10!   z i,j!, i 1,m!, j=i,n!

where m and n are dimensions of the grid and z is the depth values at the nodes of the grid.

This format is understood by gn3d and thus, this output file becomes input file for gn3d.

Example:

save grid bathymetry for gn3d depth.bin!;

Save grid bathymetry for tecplot

The generated bathymetry can be saved in the Tecplot binary format using
save grid bathymetry for tecplot  bathymetry tec file!

This format is understood by Tecplot and thus, this output file becomes input file for

Tecplot.

Example:

save grid bathymetry for tecplot depth.pit!;

The generated bathymetry can be saved in the following binary format using
save grid bathymetry for gn3d  bathymetry output file!;
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Display this help message

Example:

help  !,

Quit the program

To quit, simply call quit  !.

Example:

quit  !;

'T. 1 Sample commands 6le

This is a sample commands Gle for gndepth.

load grid grid. jnk!;
generate mount bathymetry i,d0, ,3d0, 203.d0, 205.dO, 208.dO, 209.dO!;
rm depth.jnk!;

rm depth.pit!;

save grid bathymetry for gn3d depth.jnk!;
save grid bathymetry for tecplot depth.pit!;

quit;

8 gnwvemkr - Numerical Wave maker

The numerical wave maker has the capability generating cnoidal and solitary waves. The
program is prompt-driven and commands are entered by the user interactively.
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The help command, help  !, displays the syntax of all the commands of gndepth. This
command has no arguments.
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Amplitude

Example:

set amplitude�.0$!;

Wavelength

The amplitude of the incoming wave is specified using set wave length which takes the
value of the wave length  real+8! as argument.

Example:

set wave length iO.d0!;

Wave modulation factor

The incoming wave can be Inodulated. The modulation factor is specified using
set wavewodulation factor with the value of the factor  realw8! as argument.

Example:

set wave modulation factor l.d0!;

Number of time steps

The total number of time steps needed to simulate the time duration of intereset is set using

the command, setmo of time steps.

Example:

set no of time steps�0.d0!;
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The amplitude of the incoming wave is specified using set amplitude which takes the value
of the amplitude  realw8! as argunient.
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Time step

The time step interval is set using the command set time step with the value of time step

 reale8! as argument.

Example:

set time step�.0idO!;

Gravity

The gravititational acceleration is set using the command set gravity with the value
 realo8! as argument. This value determines the unit-system used in the program. Con-
sistent units must be used for all inputs.

Example:

set gravity 9.8idO!;

Depth

set depth  real!

Example:

set depth i0.0dO!;

Lateral condition

Two types of lateral conditions are possible �! Wall condition �I radiation condition. There
are two lateral boundaries, one on the left of the incoming wave direction and the other on
the right. These are speci6ed using set lateral cdn  integer, integer!. A value of 1
represents wall. condition and a value of 2 represents radiation condition,
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The depth value at the incoming boundary is set using the command set depth with
the value  reale8! as argument.
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Example:

set lateral cdn�,1!;

Shift along x

set x shift  real!

Example:

set x shift -10,d0!;

x at incoming boundary

Example:

set x at incoming bdry -10.dO!;

x at outgoing boundary

The value of x at the outgoing boundary is set using set~ at outgoing Mry with a
 real+8! value as the argument. This value is used to generate initial wave profile. In
some cases, we may start the simulation with wave already  partially! inside the domain.

Example:

set x at going bdry -iO.dO!;
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The value of x at the incoming boundary is set using set~ at incoming bdry with a
 real*8! value as the argument. This value is used to generate initial wave profiie. In
some cases, we may start the simulation with wave already  partially! inside the domain.
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Grid spacing

The value of grid spacing is set using set deltam with a  realms! value as the argument.
In some cases, we may start the simulation with wave already  partially! inside the domain
and this value is used to generate initial wave profile.

Example:

set delta x�.02d0!;

Incoming wave

The incoming wave can be generated by calling generate incoming wave  !. This command
has no arguments.

Example:

generate incoming wave !;

Wave profile

generate wave profile  !

The initial wave profile can be generated by calling generate wave profile  !. This
command has no arguments,

Example:

generate wave profile !;

Save wave
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The incoming wave and other pertinent info can be save in gn3d binary format using
save incoming wave for ga3d  f ile~ame!. This format is understood by gn3d and thus,
this output file becomes input file for gn34.
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Example:

save incoming wave for gn3d wave, jnk!

The incoming wave can be saved in Tecplot binary format using
save incoming waveAor tecplot  filename!. This format is understood by Tecplot
and thus, this output file becomes input file for Tecplot,

save incoming wave for tecplot  !

Example:

save incoming wave for tecplot wave.pit!

The initial wave pi'ofile can be saved in gn3d binary format using
save wave prof ile f or~3d  f ilemame!, This format is understood by gn3d and
thus, this output file becomes input file for gn3d as the initial condition for the case.

Example:

save wave profile for gn3d initcdn.jnk!

Example:

save wave profile for tecplot initcdn,pit!

9 Sample commands Gle

This is a sample commands file for gnwvemkr.
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The initial wave profile can be saved in Tecplot binary format using
save wave profile for tecplot  filename!. This format is understood by Tecplot and
thus, this output file becomes input file for Tecplot.
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set gravity i.dO!

set depth i,d0!

set vave height�.1dO!

set vave length�1.35d0!

set x shift�.d0!

set x at incoming bdry�.dO!

set vave modulation factor i.dO!

load grid grid.jnk!

set no of vaves�0!

set time step�.07dO!

generate incoming vave !;
rm vave.pit!

rm wave.jnk!

save incoming vave for tecplot wave,pit!
save incoming wave for gn3d vave.jnk!

rm initcdn,jnk!

save wave profile for gn3d initcdn.j nk!

quit

10 gn3dtec - Tecplot file generation

gn3dtec is a utility that converts Fortran binary output from gn3d to Tecplot format.

11 Commands

11.1 Save mesh

Example:
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The command mesh2tec can be used to convert the mesh output fiie from gn3d to tecplot
format. The syntax is mesh2tec gn3dmesh. out, mesh.pit!; where gn3dmesh. out is the
gn3d mesh-output file and mesh.pit is the Tecplot file.
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mesh2tec mesh.out, mesh.pit!;

11.2 Save velocity

Example:

vel2tec vel.out, mesh.out, i, iO, vel.pit!;

11.3 Save surface elevation

The command zeta2tec can be used to convert the surface elevation output file from
gu3d to tecplot format. The syntax is zeta2tec gn3dzeta.out, mesh. out, datasetnumi,
datasetnum2, data step, zeta.pit!; where gn3dzeta. out is the gn3d surface elevation-
output file and zeta.pit is the Tecplot file. datasetnumiand datasetnum2 represent the
starting and ending numbers of the datasets that are to be saved, respectively. data step
is the dataset-interval at which the datasets are to be saved

Example:

zeta2tec zeta.out, mesh.out, 1, iO, 2, zeta.pit!;

11.4 Save gage surface elevation

The command gage2tec can be used to convert the gage surface elevation output file from
gn3d to tecplot format. The syntax is gage2tec  gn3dgage. out, datasetnum, gage. pit!;
where gn3dgage. out is the gn3d gage surface elevation-output file and gage,pit is the
Tecplot file. datasetnum represents the number of the dataset that is to be saved.
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The command ve12tec can be used to convert the velocity output file from gn3d to tecplot
format. The syntax is vel2tec gn3dvel,out, mesh.out, datasetnumi, datasetnum2,
vel.pit!; where gn3dvel,out is the gn3d velocity-output file, gn3dmesh,out is the gn3d
mesh-output file and vel. pit is the Tecplot file. datasetuumi and datasetnum2 represent
the starting and ending numbers of the datasets that are to be saved, respectively.
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Example:

gage2tec gage.out. 10, gage.pit!;
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